from transformers import Pipeline import torch class TBCP(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "text_pair" in kwargs: preprocess_kwargs["text_pair"] = kwargs["text_pair"] return preprocess_kwargs, {}, {} def preprocess(self, text, text_pair=None): return self.tokenizer(text, text_pair=text_pair, return_tensors="pt") def _forward(self, model_inputs): return self.model(**model_inputs) def postprocess(self, model_outputs): logits = model_outputs.logits probabilities = torch.nn.functional.softmax(logits, dim=-1) best_class = probabilities.argmax().item() label = self.model.config.id2label[best_class] score = probabilities.squeeze()[best_class].item() logits = logits.squeeze().tolist() return {"label": label, "score": score, "logits": logits}