Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +239 -3
- config.json +44 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- configuration.py +145 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modeling.py +1407 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,239 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Alibaba-NLP/gte-base-en-v1.5
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: Tech Start-up Revolutionizes Water Purification SAN FRANCISCO - AquaTech,
|
14 |
+
a Silicon Valley start-up, unveiled its groundbreaking water purification system
|
15 |
+
today. Using advanced nanotechnology, the device can purify contaminated water
|
16 |
+
in seconds, potentially bringing safe drinking water to millions. "This could
|
17 |
+
be a game-changer for global health," said WHO representative Dr. Amina Osei.
|
18 |
+
Field trials are set to begin next month.
|
19 |
+
- text: Whistleblower Exposes Massive Fraud in Medicare Billing WASHINGTON - A former
|
20 |
+
employee of MedTech Solutions, a major medical equipment supplier, has come forward
|
21 |
+
with explosive allegations of systematic fraud in Medicare billing practices.
|
22 |
+
The whistleblower, whose identity remains protected, claims the company routinely
|
23 |
+
inflated prices and billed for unnecessary equipment, defrauding the government
|
24 |
+
of an estimated $1.2 billion over five years. Documents obtained by this newspaper
|
25 |
+
appear to corroborate these claims, showing discrepancies between actual costs
|
26 |
+
and billed amounts for common medical devices such as wheelchairs and oxygen tanks.
|
27 |
+
"This isn't just about money," said Senator Lisa Kline, chair of the Senate Health
|
28 |
+
Committee. "This kind of fraud directly impacts patient care and drives up healthcare
|
29 |
+
costs for everyone." The Department of Justice has announced a full investigation
|
30 |
+
into MedTech Solutions and its parent company, HealthCorp International. Industry
|
31 |
+
experts suggest this could be just the tip of the iceberg, with similar practices
|
32 |
+
potentially widespread across the medical supply sector. MedTech Solutions has
|
33 |
+
denied all allegations and vowed to cooperate fully with investigators.
|
34 |
+
- text: Nursing Home Chain Under Fire for Neglect and Fraud CHICAGO - A damning report
|
35 |
+
released today by state health inspectors reveals a pattern of severe neglect
|
36 |
+
and fraudulent practices across Sunset Years, one of the nation's largest nursing
|
37 |
+
home chains. Investigators found widespread understaffing, with some facilities
|
38 |
+
staffed at dangerously low levels while still billing Medicare and Medicaid for
|
39 |
+
full care. In several instances, residents were found to be malnourished or suffering
|
40 |
+
from untreated bedsores, despite records indicating proper care. "It's heartbreaking,"
|
41 |
+
said Maria Rodriguez, whose mother was a resident at one of the chain's Chicago
|
42 |
+
facilities. "We trusted them with our loved ones, and they betrayed that trust
|
43 |
+
for profit." Sunset Years CEO Robert Thompson issued a statement claiming the
|
44 |
+
issues were isolated incidents and not reflective of the company's overall standards.
|
45 |
+
However, multiple state attorneys general have announced plans to pursue legal
|
46 |
+
action against the chain
|
47 |
+
- text: Global Coffee Prices Surge Amid Brazilian Drought Coffee futures hit a five-year
|
48 |
+
high today as severe drought continues to ravage Brazil's coffee-growing regions.
|
49 |
+
Experts warn consumers may see significant price increases in coming months.
|
50 |
+
- text: 'BREAKING: Hospital CEO Arrested in Kickback Scheme Federal agents arrested
|
51 |
+
Mercy General Hospital CEO John Smith today on charges of accepting kickbacks
|
52 |
+
for preferential treatment of patients. Prosecutors allege Smith pocketed over
|
53 |
+
$2 million, compromising patient care. Smith''s lawyer denies all accusations.'
|
54 |
+
inference: true
|
55 |
+
model-index:
|
56 |
+
- name: SetFit with Alibaba-NLP/gte-base-en-v1.5
|
57 |
+
results:
|
58 |
+
- task:
|
59 |
+
type: text-classification
|
60 |
+
name: Text Classification
|
61 |
+
dataset:
|
62 |
+
name: Unknown
|
63 |
+
type: unknown
|
64 |
+
split: test
|
65 |
+
metrics:
|
66 |
+
- type: accuracy
|
67 |
+
value: 0.8181818181818182
|
68 |
+
name: Accuracy
|
69 |
+
---
|
70 |
+
|
71 |
+
# SetFit with Alibaba-NLP/gte-base-en-v1.5
|
72 |
+
|
73 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5) as the Sentence Transformer embedding model. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
|
74 |
+
|
75 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
76 |
+
|
77 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
78 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
79 |
+
|
80 |
+
## Model Details
|
81 |
+
|
82 |
+
### Model Description
|
83 |
+
- **Model Type:** SetFit
|
84 |
+
- **Sentence Transformer body:** [Alibaba-NLP/gte-base-en-v1.5](https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5)
|
85 |
+
- **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
|
86 |
+
- **Maximum Sequence Length:** 8192 tokens
|
87 |
+
- **Number of Classes:** 2 classes
|
88 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
89 |
+
<!-- - **Language:** Unknown -->
|
90 |
+
<!-- - **License:** Unknown -->
|
91 |
+
|
92 |
+
### Model Sources
|
93 |
+
|
94 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
95 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
96 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
97 |
+
|
98 |
+
### Model Labels
|
99 |
+
| Label | Examples |
|
100 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
101 |
+
| 1 | <ul><li>'Lucknow: Deputy CM Brajesh Pathak recommends dismissal of 17 govt doctors for absenteeism LUCKNOW: State govt has recommended the dismissal of 17 medical officers after they were found absent from duty for several months. In addition to this, disciplinary action has been ordered against three medical officers.The order was issued by deputy CM Brajesh Pathak who also holds the charge of health and medical education departments, said a govt spokesman on Thursday. In his order, Pathak stated: "No doctor or health worker who is negligent in medical services will be forgiven." tnn \'Committed to high-level health services\'Strict action will be taken against them. The state is committed to providing high-level health services to the people and no laxity on the count will be tolerated," Pathak stated. Three doctors who will face disciplinary action are Dr Mukul Mishra, orthopedic specialist of District Hospital, Jhansi; Dr Madhavi Singh, ophthalmologist posted at Community Health Centre, Fatehpur, Barabanki and Dr Pramod Kumar Sharma under Chief Medical Officer, Bareilly.'</li><li>"Kerala model therapy: Govt gives 56 absentee doctors 'show-cause pill' Thiruvananthapuram: The state health and family welfare department has issued show-cause notice to 56 doctors who have been on unauthorised absence in various medical colleges and pharmacy colleges in Kerala. In the notice issued by Rajan Khobragade, additional chief secretary, health and family welfare department, the doctors have been directed to report for duty before the ACS at the secretariat within 15 days."</li><li>'42% of Nigerian Doctors, Nurse Demand Bribes Before Attending to Patients - NBS Reports The National Bureau of Statistics (NBS) recently published a report titled "NBS Corruption in Nigeria: Patterns and Trend" for 2023, revealing concerning statistics about corruption in the healthcare sector. According to the report, two-thirds of Nigerian doctors, nurses, and midwives demand bribes from patients before providing treatment. Additionally, 42 percent of these health workers accept bribes to expedite procedures, while 15 percent take bribes to ensure the completion of medical procedures. It, however, added that 11 per cent were paid bribes as a "sign of appreciation," which still reflects the purpose of gratification for the healthcare service they received. "As for doctors, nurses and midwives, 11 per cent of bribes were paid as a sign of appreciation, possibly reflecting gratitude for the care received," it stated. The report comes as Nigerians have continued to raise concerns over poor quality health services in the country. With these concerns, a shortage of health workers continues to plague the health system even as practitioners travel abroad to seek better welfare with the "japa syndrome." The NBS report, in collaboration with the United Nations Office on Drugs and Crimes (UNODC), also revealed how Nigerian public officials received nothing less than N721 billion as bribes in 2023'</li></ul> |
|
102 |
+
| 0 | <ul><li>'Malta\'s former prime minister charged with corruption over hospital scandal Malta\'s former prime minister Joseph Muscat has been charged with corruption in a hospital privatisation scandal that was once investigated by the murdered investigative journalist Daphne Caruana Galizia. Muscat has been charged with accepting bribes, corruption in public office and money laundering, according to documents seen by AFP. He has described the allegations as "fantasies and lies" and said he was the victim of a political vendetta. Chris Fearne, Malta\'s deputy prime minister, who is tipped to become Malta\'s next European commissioner, and the country\'s former finance minister Edward Scicluna, who is now the governor of Malta\'s central bank, were charged with fraud, misappropriation and fraudulent gain.'</li><li>"US Supreme Court gives pharma companies a chance to thwart terrorism-funding lawsuit 21 pharmaceutical and medical equipment companies, including AstraZeneca, Pfizer, GE Healthcare USA, Johnson & Johnson, and F. Hoffmann-La Roche, are accused of illegally helping to fund terrorism in Iraq by providing corrupt payments to the Hezbollah-sponsored militia group Jaysh al-Mahdi to obtain medical supply contracts from Iraq's health ministry. The lawsuit seeks unspecified damages under the Anti-Terrorism Act."</li><li>'Health Ministry Official Arrested in Procurement Scandal JAKARTA - Indonesian authorities have arrested a high-ranking Health Ministry official on suspicion of corruption in medical equipment procurement. Agus Sutiyo, 52, Director of Medical Supplies, is accused of accepting bribes totaling $1.2 million from suppliers in exchange for awarding inflated contracts. The Corruption Eradication Commission (KPK) alleges that Sutiyo manipulated tender processes, favoring companies that offered kickbacks. The scheme reportedly cost the government an estimated $10 million in overpayments. KPK spokesperson Febri Diansyah stated, "This case undermines public trust and diverts crucial resources from healthcare services." Sutiyo faces up to 20 years in prison if convicted.'</li></ul> |
|
103 |
+
|
104 |
+
## Evaluation
|
105 |
+
|
106 |
+
### Metrics
|
107 |
+
| Label | Accuracy |
|
108 |
+
|:--------|:---------|
|
109 |
+
| **all** | 0.8182 |
|
110 |
+
|
111 |
+
## Uses
|
112 |
+
|
113 |
+
### Direct Use for Inference
|
114 |
+
|
115 |
+
First install the SetFit library:
|
116 |
+
|
117 |
+
```bash
|
118 |
+
pip install setfit
|
119 |
+
```
|
120 |
+
|
121 |
+
Then you can load this model and run inference.
|
122 |
+
|
123 |
+
```python
|
124 |
+
from setfit import SetFitModel
|
125 |
+
|
126 |
+
# Download from the 🤗 Hub
|
127 |
+
model = SetFitModel.from_pretrained("twright8/news_cats")
|
128 |
+
# Run inference
|
129 |
+
preds = model("Global Coffee Prices Surge Amid Brazilian Drought Coffee futures hit a five-year high today as severe drought continues to ravage Brazil's coffee-growing regions. Experts warn consumers may see significant price increases in coming months.")
|
130 |
+
```
|
131 |
+
|
132 |
+
<!--
|
133 |
+
### Downstream Use
|
134 |
+
|
135 |
+
*List how someone could finetune this model on their own dataset.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Out-of-Scope Use
|
140 |
+
|
141 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
<!--
|
145 |
+
## Bias, Risks and Limitations
|
146 |
+
|
147 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
### Recommendations
|
152 |
+
|
153 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
154 |
+
-->
|
155 |
+
|
156 |
+
## Training Details
|
157 |
+
|
158 |
+
### Training Set Metrics
|
159 |
+
| Training set | Min | Median | Max |
|
160 |
+
|:-------------|:----|:---------|:----|
|
161 |
+
| Word count | 55 | 153.8462 | 290 |
|
162 |
+
|
163 |
+
| Label | Training Sample Count |
|
164 |
+
|:------|:----------------------|
|
165 |
+
| 0 | 13 |
|
166 |
+
| 1 | 13 |
|
167 |
+
|
168 |
+
### Training Hyperparameters
|
169 |
+
- batch_size: (8, 1)
|
170 |
+
- num_epochs: (3, 17)
|
171 |
+
- max_steps: -1
|
172 |
+
- sampling_strategy: oversampling
|
173 |
+
- body_learning_rate: (9.629116538858926e-05, 2.651259436793277e-05)
|
174 |
+
- head_learning_rate: 0.02145586669240117
|
175 |
+
- loss: CoSENTLoss
|
176 |
+
- distance_metric: cosine_distance
|
177 |
+
- margin: 0.25
|
178 |
+
- end_to_end: True
|
179 |
+
- use_amp: True
|
180 |
+
- warmup_proportion: 0.1
|
181 |
+
- max_length: 512
|
182 |
+
- seed: 42
|
183 |
+
- eval_max_steps: -1
|
184 |
+
- load_best_model_at_end: True
|
185 |
+
|
186 |
+
### Training Results
|
187 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
188 |
+
|:----------:|:------:|:-------------:|:---------------:|
|
189 |
+
| 0.0217 | 1 | 1.8133 | - |
|
190 |
+
| **0.4348** | **20** | **0.0054** | **1.6363** |
|
191 |
+
| 0.8696 | 40 | 0.0 | 4.9011 |
|
192 |
+
| 1.3043 | 60 | 0.0 | 7.0885 |
|
193 |
+
| 1.7391 | 80 | 0.0 | 6.2756 |
|
194 |
+
| 2.1739 | 100 | 0.0 | 6.2417 |
|
195 |
+
| 2.6087 | 120 | 0.0 | 6.4769 |
|
196 |
+
|
197 |
+
* The bold row denotes the saved checkpoint.
|
198 |
+
### Framework Versions
|
199 |
+
- Python: 3.10.13
|
200 |
+
- SetFit: 1.0.3
|
201 |
+
- Sentence Transformers: 3.0.1
|
202 |
+
- Transformers: 4.39.0
|
203 |
+
- PyTorch: 2.3.0+cu121
|
204 |
+
- Datasets: 2.20.0
|
205 |
+
- Tokenizers: 0.15.2
|
206 |
+
|
207 |
+
## Citation
|
208 |
+
|
209 |
+
### BibTeX
|
210 |
+
```bibtex
|
211 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
212 |
+
doi = {10.48550/ARXIV.2209.11055},
|
213 |
+
url = {https://arxiv.org/abs/2209.11055},
|
214 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
215 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
216 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
217 |
+
publisher = {arXiv},
|
218 |
+
year = {2022},
|
219 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
220 |
+
}
|
221 |
+
```
|
222 |
+
|
223 |
+
<!--
|
224 |
+
## Glossary
|
225 |
+
|
226 |
+
*Clearly define terms in order to be accessible across audiences.*
|
227 |
+
-->
|
228 |
+
|
229 |
+
<!--
|
230 |
+
## Model Card Authors
|
231 |
+
|
232 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
233 |
+
-->
|
234 |
+
|
235 |
+
<!--
|
236 |
+
## Model Card Contact
|
237 |
+
|
238 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
239 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_20",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration.NewConfig",
|
9 |
+
"AutoModel": "modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": null,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 3072,
|
22 |
+
"layer_norm_eps": 1e-12,
|
23 |
+
"layer_norm_type": "layer_norm",
|
24 |
+
"logn_attention_clip1": false,
|
25 |
+
"logn_attention_scale": false,
|
26 |
+
"max_position_embeddings": 8192,
|
27 |
+
"model_type": "new",
|
28 |
+
"num_attention_heads": 12,
|
29 |
+
"num_hidden_layers": 12,
|
30 |
+
"pack_qkv": true,
|
31 |
+
"pad_token_id": 0,
|
32 |
+
"position_embedding_type": "rope",
|
33 |
+
"rope_scaling": {
|
34 |
+
"factor": 2.0,
|
35 |
+
"type": "ntk"
|
36 |
+
},
|
37 |
+
"rope_theta": 500000,
|
38 |
+
"torch_dtype": "float32",
|
39 |
+
"transformers_version": "4.39.0",
|
40 |
+
"type_vocab_size": 0,
|
41 |
+
"unpad_inputs": false,
|
42 |
+
"use_memory_efficient_attention": false,
|
43 |
+
"vocab_size": 30528
|
44 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
""" NEW model configuration"""
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class NewConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
29 |
+
|
30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
31 |
+
documentation from [`PretrainedConfig`] for more information.
|
32 |
+
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
41 |
+
Number of hidden layers in the Transformer encoder.
|
42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
52 |
+
The dropout ratio for the attention probabilities.
|
53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
61 |
+
The epsilon used by the layer normalization layers.
|
62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
65 |
+
The base period of the RoPE embeddings.
|
66 |
+
rope_scaling (`Dict`, *optional*):
|
67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
71 |
+
these scaling strategies behave:
|
72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
73 |
+
experimental feature, subject to breaking API changes in future versions.
|
74 |
+
classifier_dropout (`float`, *optional*):
|
75 |
+
The dropout ratio for the classification head.
|
76 |
+
|
77 |
+
Examples:
|
78 |
+
|
79 |
+
```python
|
80 |
+
>>> from transformers import NewConfig, NewModel
|
81 |
+
|
82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
83 |
+
>>> configuration = NewConfig()
|
84 |
+
|
85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
86 |
+
>>> model = NewModel(configuration)
|
87 |
+
|
88 |
+
>>> # Accessing the model configuration
|
89 |
+
>>> configuration = model.config
|
90 |
+
```"""
|
91 |
+
|
92 |
+
model_type = "new"
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
vocab_size=30528,
|
97 |
+
hidden_size=768,
|
98 |
+
num_hidden_layers=12,
|
99 |
+
num_attention_heads=12,
|
100 |
+
intermediate_size=3072,
|
101 |
+
hidden_act="gelu",
|
102 |
+
hidden_dropout_prob=0.1,
|
103 |
+
attention_probs_dropout_prob=0.0,
|
104 |
+
max_position_embeddings=2048,
|
105 |
+
type_vocab_size=1,
|
106 |
+
initializer_range=0.02,
|
107 |
+
layer_norm_type='layer_norm',
|
108 |
+
layer_norm_eps=1e-12,
|
109 |
+
# pad_token_id=0,
|
110 |
+
position_embedding_type="rope",
|
111 |
+
rope_theta=10000.0,
|
112 |
+
rope_scaling=None,
|
113 |
+
classifier_dropout=None,
|
114 |
+
pack_qkv=True,
|
115 |
+
unpad_inputs=False,
|
116 |
+
use_memory_efficient_attention=False,
|
117 |
+
logn_attention_scale=False,
|
118 |
+
logn_attention_clip1=False,
|
119 |
+
**kwargs,
|
120 |
+
):
|
121 |
+
super().__init__(**kwargs)
|
122 |
+
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.hidden_size = hidden_size
|
125 |
+
self.num_hidden_layers = num_hidden_layers
|
126 |
+
self.num_attention_heads = num_attention_heads
|
127 |
+
self.hidden_act = hidden_act
|
128 |
+
self.intermediate_size = intermediate_size
|
129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
131 |
+
self.max_position_embeddings = max_position_embeddings
|
132 |
+
self.type_vocab_size = type_vocab_size
|
133 |
+
self.initializer_range = initializer_range
|
134 |
+
self.layer_norm_type = layer_norm_type
|
135 |
+
self.layer_norm_eps = layer_norm_eps
|
136 |
+
self.position_embedding_type = position_embedding_type
|
137 |
+
self.rope_theta = rope_theta
|
138 |
+
self.rope_scaling = rope_scaling
|
139 |
+
self.classifier_dropout = classifier_dropout
|
140 |
+
|
141 |
+
self.pack_qkv = pack_qkv
|
142 |
+
self.unpad_inputs = unpad_inputs
|
143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
144 |
+
self.logn_attention_scale = logn_attention_scale
|
145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f118bf0a45a5b1f81b12afb79d250c0b1d712bf19fadb2b32c76e790ebc57d3
|
3 |
+
size 547119128
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3f5339885643e3b45e7350dbf556d1f87db4e25888051a738378301c60c8a24
|
3 |
+
size 7702
|
modeling.py
ADDED
@@ -0,0 +1,1407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""PyTorch NEW model."""
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
|
25 |
+
from transformers.activations import ACT2FN
|
26 |
+
from transformers.modeling_outputs import (
|
27 |
+
BaseModelOutput,
|
28 |
+
BaseModelOutputWithPooling,
|
29 |
+
MaskedLMOutput,
|
30 |
+
MultipleChoiceModelOutput,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutput,
|
33 |
+
TokenClassifierOutput,
|
34 |
+
)
|
35 |
+
from transformers.modeling_utils import PreTrainedModel
|
36 |
+
from transformers.utils import logging
|
37 |
+
|
38 |
+
try:
|
39 |
+
import xformers.ops as xops
|
40 |
+
except ImportError as e:
|
41 |
+
xops = None
|
42 |
+
|
43 |
+
from .configuration import NewConfig
|
44 |
+
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
|
49 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
50 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
51 |
+
class IndexFirstAxis(torch.autograd.Function):
|
52 |
+
@staticmethod
|
53 |
+
def forward(ctx, input, indices):
|
54 |
+
ctx.save_for_backward(indices)
|
55 |
+
assert input.ndim >= 2
|
56 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
57 |
+
second_dim = other_shape.numel()
|
58 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
59 |
+
# return input[indices]
|
60 |
+
# return torch.gather(
|
61 |
+
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
62 |
+
# ).reshape(-1, *other_shape)
|
63 |
+
return torch.gather(
|
64 |
+
input.view(ctx.first_axis_dim, second_dim),
|
65 |
+
0,
|
66 |
+
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
|
67 |
+
).reshape(-1, *other_shape)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def backward(ctx, grad_output):
|
71 |
+
(indices,) = ctx.saved_tensors
|
72 |
+
assert grad_output.ndim >= 2
|
73 |
+
other_shape = grad_output.shape[1:]
|
74 |
+
# grad_output = rearrange(grad_output, "b ... -> b (...)")
|
75 |
+
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
|
76 |
+
grad_input = torch.zeros(
|
77 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
78 |
+
device=grad_output.device,
|
79 |
+
dtype=grad_output.dtype,
|
80 |
+
)
|
81 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
82 |
+
# grad_input[indices] = grad_output
|
83 |
+
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
84 |
+
grad_input.scatter_(
|
85 |
+
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
|
86 |
+
)
|
87 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
88 |
+
|
89 |
+
|
90 |
+
index_first_axis = IndexFirstAxis.apply
|
91 |
+
|
92 |
+
|
93 |
+
def unpad_input(hidden_states, attention_mask=None, indices=None):
|
94 |
+
"""
|
95 |
+
Arguments:
|
96 |
+
hidden_states: (batch, seqlen, ...)
|
97 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
98 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
99 |
+
Return:
|
100 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
101 |
+
"""
|
102 |
+
if indices is None:
|
103 |
+
assert attention_mask is not None
|
104 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
105 |
+
|
106 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
107 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
108 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
109 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
110 |
+
# so we write custom forward and backward to make it a bit faster.
|
111 |
+
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
|
112 |
+
return index_first_axis(hidden_states, indices)
|
113 |
+
|
114 |
+
|
115 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
116 |
+
@staticmethod
|
117 |
+
def forward(
|
118 |
+
ctx,
|
119 |
+
values: torch.Tensor,
|
120 |
+
indices: torch.Tensor,
|
121 |
+
first_axis_dim
|
122 |
+
) -> torch.Tensor:
|
123 |
+
ctx.save_for_backward(indices)
|
124 |
+
assert indices.ndim == 1
|
125 |
+
assert values.ndim >= 2
|
126 |
+
output = torch.zeros(
|
127 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
128 |
+
)
|
129 |
+
output[indices] = values
|
130 |
+
return output
|
131 |
+
|
132 |
+
@staticmethod
|
133 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
134 |
+
indices, = ctx.saved_tensors
|
135 |
+
grad_values = grad_output[indices]
|
136 |
+
return grad_values, None, None
|
137 |
+
|
138 |
+
|
139 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
140 |
+
|
141 |
+
|
142 |
+
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
|
143 |
+
"""Add padding to sequences.
|
144 |
+
|
145 |
+
Arguments:
|
146 |
+
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
147 |
+
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
|
148 |
+
batch: int batch_size
|
149 |
+
seqlen: int max sequence length
|
150 |
+
|
151 |
+
Returns:
|
152 |
+
inputs: (batch, seqlen, ...)
|
153 |
+
"""
|
154 |
+
output = index_put_first_axis(inputs, indices, batch * seqlen)
|
155 |
+
return output.view(batch, seqlen, *inputs.shape[1:])
|
156 |
+
|
157 |
+
|
158 |
+
def rotate_half(x):
|
159 |
+
"""Rotates half the hidden dims of the input."""
|
160 |
+
x1 = x[..., : x.shape[-1] // 2]
|
161 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
162 |
+
return torch.cat((-x2, x1), dim=-1)
|
163 |
+
|
164 |
+
|
165 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
166 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
167 |
+
|
168 |
+
Args:
|
169 |
+
q (`torch.Tensor`): The query tensor.
|
170 |
+
k (`torch.Tensor`): The key tensor.
|
171 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
172 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
173 |
+
Returns:
|
174 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
175 |
+
"""
|
176 |
+
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
|
177 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
178 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
179 |
+
return q_embed, k_embed
|
180 |
+
|
181 |
+
|
182 |
+
class RotaryEmbedding(torch.nn.Module):
|
183 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
|
184 |
+
super().__init__()
|
185 |
+
|
186 |
+
self.dim = dim
|
187 |
+
self.max_position_embeddings = max_position_embeddings
|
188 |
+
self.base = base
|
189 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
190 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
191 |
+
|
192 |
+
# Build here to make `torch.jit.trace` work.
|
193 |
+
self._set_cos_sin_cache(
|
194 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
195 |
+
)
|
196 |
+
|
197 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
198 |
+
self.max_seq_len_cached = seq_len
|
199 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
200 |
+
|
201 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
202 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
203 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
204 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
205 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
206 |
+
|
207 |
+
def forward(self, x, seq_len=None):
|
208 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
209 |
+
if seq_len > self.max_seq_len_cached:
|
210 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
211 |
+
|
212 |
+
return (
|
213 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
214 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
215 |
+
)
|
216 |
+
|
217 |
+
|
218 |
+
class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
219 |
+
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
|
220 |
+
|
221 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
|
222 |
+
self.scaling_factor = scaling_factor
|
223 |
+
self.mixed_b = mixed_b
|
224 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
225 |
+
max_position_embeddings = max_position_embeddings * self.scaling_factor
|
226 |
+
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
|
227 |
+
|
228 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
229 |
+
self.max_seq_len_cached = seq_len
|
230 |
+
|
231 |
+
if seq_len > self.max_position_embeddings:
|
232 |
+
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
233 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
234 |
+
|
235 |
+
if self.mixed_b is None:
|
236 |
+
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
|
237 |
+
else:
|
238 |
+
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
|
239 |
+
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
|
240 |
+
inv_freq = inv_freq / lambda_1_m # (10)
|
241 |
+
|
242 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
243 |
+
|
244 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
245 |
+
|
246 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
247 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
248 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
249 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
250 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
251 |
+
|
252 |
+
|
253 |
+
class RMSNorm(nn.Module):
|
254 |
+
def __init__(self, hidden_size, eps=1e-6):
|
255 |
+
"""
|
256 |
+
RMSNorm is equivalent to T5LayerNorm
|
257 |
+
"""
|
258 |
+
super().__init__()
|
259 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
260 |
+
self.variance_epsilon = eps
|
261 |
+
|
262 |
+
def forward(self, hidden_states):
|
263 |
+
input_dtype = hidden_states.dtype
|
264 |
+
hidden_states = hidden_states.to(torch.float32)
|
265 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
266 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
267 |
+
return self.weight * hidden_states.to(input_dtype)
|
268 |
+
|
269 |
+
|
270 |
+
LAYER_NORM = {
|
271 |
+
'layer_norm': nn.LayerNorm,
|
272 |
+
'rms_norm': RMSNorm
|
273 |
+
}
|
274 |
+
|
275 |
+
|
276 |
+
class NewEmbeddings(nn.Module):
|
277 |
+
"""
|
278 |
+
Embedding and Unpadding.
|
279 |
+
"""
|
280 |
+
|
281 |
+
def __init__(self, config: NewConfig):
|
282 |
+
super().__init__()
|
283 |
+
self.padding_idx = config.pad_token_id
|
284 |
+
self.word_embeddings = nn.Embedding(
|
285 |
+
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
|
286 |
+
)
|
287 |
+
|
288 |
+
self.position_embedding_type = config.position_embedding_type
|
289 |
+
if self.position_embedding_type == 'absolute':
|
290 |
+
self.position_embeddings = nn.Embedding(
|
291 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
292 |
+
)
|
293 |
+
elif self.position_embedding_type == 'rope':
|
294 |
+
self._init_rope(config)
|
295 |
+
else:
|
296 |
+
raise ValueError
|
297 |
+
|
298 |
+
self.type_vocab_size = config.type_vocab_size
|
299 |
+
if self.type_vocab_size > 0:
|
300 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
301 |
+
|
302 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
303 |
+
# any TensorFlow checkpoint file
|
304 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
305 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
306 |
+
# position_ids is contiguous in memory and excluded when serialized
|
307 |
+
self.register_buffer(
|
308 |
+
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
|
309 |
+
)
|
310 |
+
|
311 |
+
def _init_rope(self, config):
|
312 |
+
kwargs = dict(
|
313 |
+
dim=int(config.hidden_size / config.num_attention_heads),
|
314 |
+
max_position_embeddings=config.max_position_embeddings,
|
315 |
+
base=config.rope_theta
|
316 |
+
)
|
317 |
+
if config.rope_scaling is None:
|
318 |
+
self.rotary_emb = RotaryEmbedding(**kwargs)
|
319 |
+
else:
|
320 |
+
kwargs.update(scaling_factor=config.rope_scaling["factor"])
|
321 |
+
scaling_type = config.rope_scaling["type"]
|
322 |
+
if scaling_type == 'ntk':
|
323 |
+
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
|
324 |
+
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
|
325 |
+
# elif scaling_type == "linear":
|
326 |
+
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
|
327 |
+
# elif scaling_type == "dynamic":
|
328 |
+
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
|
329 |
+
else:
|
330 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
331 |
+
|
332 |
+
def forward(
|
333 |
+
self,
|
334 |
+
unpad_inputs: bool,
|
335 |
+
input_ids: Optional[torch.Tensor] = None,
|
336 |
+
attention_mask: Optional[torch.Tensor] = None,
|
337 |
+
length: Optional[List[int]] = None,
|
338 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
339 |
+
position_ids: Optional[torch.Tensor] = None,
|
340 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
341 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
|
342 |
+
"""
|
343 |
+
"""
|
344 |
+
if inputs_embeds is None:
|
345 |
+
device, input_shape = input_ids.device, input_ids.shape
|
346 |
+
else:
|
347 |
+
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
|
348 |
+
batch_size, seq_length = input_shape
|
349 |
+
|
350 |
+
# Set attention_mask if it's None
|
351 |
+
if attention_mask is None:
|
352 |
+
attention_mask = torch.ones(input_shape, device=device)
|
353 |
+
if length is not None:
|
354 |
+
for i, l in enumerate(length):
|
355 |
+
attention_mask[i, l:] = 0
|
356 |
+
|
357 |
+
# Set attention_mask_bool for unpadding
|
358 |
+
if unpad_inputs:
|
359 |
+
attention_mask_bool = attention_mask.bool()
|
360 |
+
if length is None:
|
361 |
+
length = attention_mask.sum(-1).tolist()
|
362 |
+
|
363 |
+
# Get word embeddings
|
364 |
+
if inputs_embeds is None:
|
365 |
+
if unpad_inputs:
|
366 |
+
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
|
367 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
368 |
+
else:
|
369 |
+
if unpad_inputs:
|
370 |
+
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
|
371 |
+
embeddings = inputs_embeds
|
372 |
+
|
373 |
+
# Set and unpad position_ids
|
374 |
+
if position_ids is None:
|
375 |
+
if seq_length > self.position_ids.size(0):
|
376 |
+
self.register_buffer(
|
377 |
+
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
|
378 |
+
)
|
379 |
+
if unpad_inputs:
|
380 |
+
# [1, cumsum_seq_len]
|
381 |
+
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
|
382 |
+
else:
|
383 |
+
# [bs, seq_len]
|
384 |
+
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
|
385 |
+
elif unpad_inputs:
|
386 |
+
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
|
387 |
+
|
388 |
+
# Compute rotary embedding
|
389 |
+
if self.position_embedding_type == 'rope':
|
390 |
+
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
|
391 |
+
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
392 |
+
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
393 |
+
rope_embeds = rope_cos, rope_sin
|
394 |
+
else:
|
395 |
+
rope_embeds = None
|
396 |
+
|
397 |
+
if self.type_vocab_size > 0:
|
398 |
+
if token_type_ids is None:
|
399 |
+
token_type_ids = position_ids.mul(0)
|
400 |
+
else:
|
401 |
+
if self.type_vocab_size < 2:
|
402 |
+
token_type_ids.mul_(0)
|
403 |
+
if unpad_inputs:
|
404 |
+
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
|
405 |
+
|
406 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
407 |
+
embeddings = embeddings + token_type_embeddings
|
408 |
+
|
409 |
+
# BERT position
|
410 |
+
if self.position_embedding_type == "absolute":
|
411 |
+
position_embeddings = self.position_embeddings(position_ids)
|
412 |
+
embeddings = embeddings + position_embeddings
|
413 |
+
|
414 |
+
embeddings = self.LayerNorm(embeddings)
|
415 |
+
embeddings = self.dropout(embeddings)
|
416 |
+
|
417 |
+
return embeddings, attention_mask, rope_embeds, length
|
418 |
+
|
419 |
+
|
420 |
+
class NewAttention(nn.Module):
|
421 |
+
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
|
422 |
+
super().__init__()
|
423 |
+
self.config = config
|
424 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
425 |
+
raise ValueError(
|
426 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
427 |
+
f"heads ({config.num_attention_heads})"
|
428 |
+
)
|
429 |
+
|
430 |
+
self.hidden_size = config.hidden_size
|
431 |
+
self.num_attention_heads = config.num_attention_heads
|
432 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
433 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
434 |
+
|
435 |
+
if pack_qkv is None:
|
436 |
+
pack_qkv = config.pack_qkv
|
437 |
+
self.pack_qkv = pack_qkv
|
438 |
+
|
439 |
+
if self.pack_qkv:
|
440 |
+
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
|
441 |
+
else:
|
442 |
+
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
443 |
+
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
444 |
+
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
445 |
+
|
446 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
447 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
448 |
+
|
449 |
+
if use_memory_efficient_attention is None:
|
450 |
+
use_memory_efficient_attention = self.config.use_memory_efficient_attention
|
451 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
452 |
+
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
453 |
+
if self.use_memory_efficient_attention:
|
454 |
+
assert self.memory_efficient_attention is not None, 'please install xformers'
|
455 |
+
|
456 |
+
def forward(
|
457 |
+
self,
|
458 |
+
hidden_states: torch.Tensor,
|
459 |
+
attention_bias: torch.FloatTensor,
|
460 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
461 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
462 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
463 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
464 |
+
output_attentions: Optional[bool] = False,
|
465 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
466 |
+
) -> Tuple[torch.Tensor, ...]:
|
467 |
+
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
468 |
+
# qkv
|
469 |
+
if self.pack_qkv and qkv_inputs is None:
|
470 |
+
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
|
471 |
+
else:
|
472 |
+
if qkv_inputs is None:
|
473 |
+
qkv_inputs = (hidden_states, hidden_states, hidden_states)
|
474 |
+
qkv_pack = [
|
475 |
+
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
|
476 |
+
]
|
477 |
+
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
|
478 |
+
|
479 |
+
if self.config.position_embedding_type == 'rope':
|
480 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
|
481 |
+
|
482 |
+
dtype = query_states.dtype
|
483 |
+
|
484 |
+
if self.config.logn_attention_scale and attention_scale is not None:
|
485 |
+
# https://kexue.fm/archives/8823
|
486 |
+
query_states = query_states * attention_scale.to(dtype)
|
487 |
+
|
488 |
+
if padding_inputs is not None:
|
489 |
+
query_states = pad_input(query_states.squeeze(), *padding_inputs)
|
490 |
+
key_states = pad_input(key_states.squeeze(), *padding_inputs)
|
491 |
+
value_states = pad_input(value_states.squeeze(), *padding_inputs)
|
492 |
+
|
493 |
+
if self.use_memory_efficient_attention:
|
494 |
+
assert self.memory_efficient_attention is not None, "xformers is not loaded"
|
495 |
+
assert output_attentions is False, "memory_efficient_attention do not output attentions"
|
496 |
+
assert head_mask is None, "Not support yet"
|
497 |
+
attention_probs = None
|
498 |
+
if torch.is_tensor(attention_bias):
|
499 |
+
attention_bias = attention_bias.to(dtype)
|
500 |
+
context_layer = self.memory_efficient_attention(
|
501 |
+
query_states,
|
502 |
+
key_states,
|
503 |
+
value_states,
|
504 |
+
attn_bias=attention_bias,
|
505 |
+
p=self.dropout.p
|
506 |
+
)
|
507 |
+
else:
|
508 |
+
if output_attentions and isinstance(self, NewSdpaAttention):
|
509 |
+
raise RuntimeError("SDPA do not output attentions")
|
510 |
+
context_layer, attention_probs = self._attention(
|
511 |
+
query_states, key_states, value_states, attention_bias, head_mask
|
512 |
+
)
|
513 |
+
|
514 |
+
if padding_inputs is not None:
|
515 |
+
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
516 |
+
|
517 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
518 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
519 |
+
|
520 |
+
# output proj
|
521 |
+
attn_output = self.o_proj(context_layer)
|
522 |
+
|
523 |
+
# add attentions if we output them
|
524 |
+
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
|
525 |
+
return outputs
|
526 |
+
|
527 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
528 |
+
"""
|
529 |
+
Args:
|
530 |
+
q/k/v: (B, L, n_head, head_dim),
|
531 |
+
Returns:
|
532 |
+
attn_output: (B L, n_head, head_dim)
|
533 |
+
"""
|
534 |
+
query_states = query_states.transpose(1, 2)
|
535 |
+
key_states = key_states.transpose(1, 2)
|
536 |
+
value_states = value_states.transpose(1, 2)
|
537 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
538 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
539 |
+
|
540 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
541 |
+
if attention_bias is not None:
|
542 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
543 |
+
attention_scores = attention_scores + attention_bias
|
544 |
+
|
545 |
+
# Normalize the attention scores to probabilities.
|
546 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
547 |
+
|
548 |
+
# This is actually dropping out entire tokens to attend to, which might
|
549 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
550 |
+
if self.dropout.p > 0:
|
551 |
+
attention_probs = self.dropout(attention_probs)
|
552 |
+
|
553 |
+
# Mask heads if we want to
|
554 |
+
if head_mask is not None:
|
555 |
+
attention_probs = attention_probs * head_mask
|
556 |
+
|
557 |
+
context_layer = torch.matmul(attention_probs, value_states)
|
558 |
+
|
559 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
560 |
+
return context_layer, attention_probs
|
561 |
+
|
562 |
+
|
563 |
+
class NewSdpaAttention(NewAttention):
|
564 |
+
"""
|
565 |
+
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
566 |
+
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
567 |
+
SDPA API.
|
568 |
+
"""
|
569 |
+
def __init__(self, config: NewConfig, **kwargs):
|
570 |
+
super().__init__(config, **kwargs)
|
571 |
+
# torch.backends.cuda.enable_mem_efficient_sdp(False)
|
572 |
+
# logger.warning(
|
573 |
+
# "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
|
574 |
+
# "`use_memory_efficient_attention=True` if it expected to use."
|
575 |
+
# )
|
576 |
+
|
577 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
578 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
579 |
+
query_states.transpose(1, 2),
|
580 |
+
key_states.transpose(1, 2),
|
581 |
+
value_states.transpose(1, 2),
|
582 |
+
attn_mask=attention_bias,
|
583 |
+
dropout_p=self.dropout.p if self.training else 0.0,
|
584 |
+
)
|
585 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
586 |
+
return attn_output, None
|
587 |
+
|
588 |
+
|
589 |
+
NEW_ATTENTION_CLASSES = {
|
590 |
+
"eager": NewAttention,
|
591 |
+
# "flash_attention_2": , # TODO
|
592 |
+
"sdpa": NewSdpaAttention,
|
593 |
+
}
|
594 |
+
|
595 |
+
|
596 |
+
class NewGatedMLP(nn.Module):
|
597 |
+
"""
|
598 |
+
GLU Variants Improve Transformer.
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __init__(self, config: NewConfig):
|
602 |
+
super().__init__()
|
603 |
+
self.intermediate_size = config.intermediate_size
|
604 |
+
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
|
605 |
+
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
|
606 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
607 |
+
if config.hidden_dropout_prob > 0:
|
608 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
609 |
+
else:
|
610 |
+
self.hidden_dropout = None
|
611 |
+
|
612 |
+
def forward(self, hidden_states):
|
613 |
+
up_gate = self.up_gate_proj(hidden_states)
|
614 |
+
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
|
615 |
+
gate = self.act_fn(gate)
|
616 |
+
gated_states = gate * up_states
|
617 |
+
if self.hidden_dropout is not None:
|
618 |
+
gated_states = self.hidden_dropout(gated_states)
|
619 |
+
down_states = self.down_proj(gated_states)
|
620 |
+
return down_states
|
621 |
+
|
622 |
+
|
623 |
+
class NewLayer(nn.Module):
|
624 |
+
def __init__(
|
625 |
+
self,
|
626 |
+
config: NewConfig,
|
627 |
+
pack_qkv=None,
|
628 |
+
use_memory_efficient_attention=None,
|
629 |
+
attn_implementation=None
|
630 |
+
):
|
631 |
+
super().__init__()
|
632 |
+
if attn_implementation is None:
|
633 |
+
attn_implementation = config._attn_implementation
|
634 |
+
if use_memory_efficient_attention is None:
|
635 |
+
use_memory_efficient_attention = config.use_memory_efficient_attention
|
636 |
+
if use_memory_efficient_attention:
|
637 |
+
if attn_implementation != 'eager':
|
638 |
+
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
|
639 |
+
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
|
640 |
+
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
641 |
+
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
642 |
+
)
|
643 |
+
self.mlp = NewGatedMLP(config)
|
644 |
+
|
645 |
+
ln_class = LAYER_NORM[config.layer_norm_type]
|
646 |
+
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
647 |
+
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
648 |
+
|
649 |
+
if config.hidden_dropout_prob > 0:
|
650 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
651 |
+
else:
|
652 |
+
self.hidden_dropout = None
|
653 |
+
|
654 |
+
def forward(
|
655 |
+
self,
|
656 |
+
hidden_states: torch.Tensor,
|
657 |
+
attention_bias: torch.FloatTensor,
|
658 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
659 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
660 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
661 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
662 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
663 |
+
output_attentions: Optional[bool] = False,
|
664 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
665 |
+
) -> Tuple[torch.Tensor, ...]:
|
666 |
+
# Multi head self attention
|
667 |
+
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
668 |
+
attention_outputs = self.attention(
|
669 |
+
hidden_states,
|
670 |
+
attention_bias,
|
671 |
+
rope_embeds,
|
672 |
+
padding_inputs,
|
673 |
+
attention_scale,
|
674 |
+
head_mask,
|
675 |
+
output_attentions=output_attentions,
|
676 |
+
qkv_inputs=qkv_inputs,
|
677 |
+
)
|
678 |
+
hidden_states = attention_outputs[0]
|
679 |
+
if self.hidden_dropout is not None:
|
680 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
681 |
+
hidden_states = residual + hidden_states
|
682 |
+
|
683 |
+
# In pretraining, after the attention of last layer, we only need the masked tokens.
|
684 |
+
if subset_indices is not None:
|
685 |
+
hidden_states = hidden_states[subset_indices]
|
686 |
+
|
687 |
+
hidden_states = self.attn_ln(hidden_states)
|
688 |
+
|
689 |
+
# Fully Connected
|
690 |
+
residual = hidden_states
|
691 |
+
hidden_states = self.mlp(hidden_states)
|
692 |
+
if self.hidden_dropout is not None:
|
693 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
694 |
+
hidden_states = residual + hidden_states
|
695 |
+
hidden_states = self.mlp_ln(hidden_states)
|
696 |
+
|
697 |
+
# add self attentions if we output attention weights
|
698 |
+
outputs = (hidden_states,) + attention_outputs[1:]
|
699 |
+
return outputs
|
700 |
+
|
701 |
+
|
702 |
+
class NewEncoder(nn.Module):
|
703 |
+
def __init__(self, config):
|
704 |
+
super().__init__()
|
705 |
+
self.config = config
|
706 |
+
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
|
707 |
+
self.gradient_checkpointing = False
|
708 |
+
|
709 |
+
def forward(
|
710 |
+
self,
|
711 |
+
hidden_states: torch.Tensor,
|
712 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
713 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
714 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
715 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
716 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
717 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
718 |
+
output_attentions: Optional[bool] = False,
|
719 |
+
output_hidden_states: Optional[bool] = False,
|
720 |
+
return_dict: Optional[bool] = True,
|
721 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
722 |
+
all_hidden_states = () if output_hidden_states else None
|
723 |
+
all_self_attentions = () if output_attentions else None
|
724 |
+
|
725 |
+
for i, layer_module in enumerate(self.layer):
|
726 |
+
if output_hidden_states:
|
727 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
728 |
+
|
729 |
+
if i >= len(self.layer) - 1:
|
730 |
+
layer_subset_indices = subset_indices
|
731 |
+
else:
|
732 |
+
layer_subset_indices = None
|
733 |
+
|
734 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
735 |
+
|
736 |
+
if self.gradient_checkpointing and self.training:
|
737 |
+
layer_outputs = self._gradient_checkpointing_func(
|
738 |
+
layer_module.__call__,
|
739 |
+
hidden_states,
|
740 |
+
attention_bias,
|
741 |
+
rope_embeds,
|
742 |
+
padding_inputs,
|
743 |
+
attention_scale,
|
744 |
+
layer_subset_indices,
|
745 |
+
layer_head_mask,
|
746 |
+
)
|
747 |
+
else:
|
748 |
+
layer_outputs = layer_module(
|
749 |
+
hidden_states,
|
750 |
+
attention_bias,
|
751 |
+
rope_embeds,
|
752 |
+
padding_inputs,
|
753 |
+
attention_scale,
|
754 |
+
layer_subset_indices,
|
755 |
+
layer_head_mask,
|
756 |
+
output_attentions,
|
757 |
+
)
|
758 |
+
|
759 |
+
hidden_states = layer_outputs[0]
|
760 |
+
if output_attentions:
|
761 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
762 |
+
|
763 |
+
if output_hidden_states:
|
764 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
return tuple(
|
768 |
+
v
|
769 |
+
for v in [
|
770 |
+
hidden_states,
|
771 |
+
all_hidden_states,
|
772 |
+
all_self_attentions,
|
773 |
+
]
|
774 |
+
if v is not None
|
775 |
+
)
|
776 |
+
return BaseModelOutput(
|
777 |
+
last_hidden_state=hidden_states,
|
778 |
+
hidden_states=all_hidden_states,
|
779 |
+
attentions=all_self_attentions,
|
780 |
+
)
|
781 |
+
|
782 |
+
|
783 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
|
784 |
+
class NewPooler(nn.Module):
|
785 |
+
def __init__(self, config):
|
786 |
+
super().__init__()
|
787 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
788 |
+
self.activation = nn.Tanh()
|
789 |
+
|
790 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
791 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
792 |
+
# to the first token.
|
793 |
+
first_token_tensor = hidden_states[:, 0]
|
794 |
+
pooled_output = self.dense(first_token_tensor)
|
795 |
+
pooled_output = self.activation(pooled_output)
|
796 |
+
return pooled_output
|
797 |
+
|
798 |
+
|
799 |
+
class NewPreTrainedModel(PreTrainedModel):
|
800 |
+
"""
|
801 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
802 |
+
models.
|
803 |
+
"""
|
804 |
+
|
805 |
+
config_class = NewConfig
|
806 |
+
base_model_prefix = "new"
|
807 |
+
supports_gradient_checkpointing = True
|
808 |
+
_supports_sdpa = True
|
809 |
+
|
810 |
+
def _init_weights(self, module):
|
811 |
+
"""Initialize the weights"""
|
812 |
+
if isinstance(module, nn.Linear):
|
813 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
814 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
815 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
816 |
+
if module.bias is not None:
|
817 |
+
module.bias.data.zero_()
|
818 |
+
elif isinstance(module, nn.Embedding):
|
819 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
820 |
+
if module.padding_idx is not None:
|
821 |
+
module.weight.data[module.padding_idx].zero_()
|
822 |
+
elif isinstance(module, nn.LayerNorm):
|
823 |
+
module.bias.data.zero_()
|
824 |
+
module.weight.data.fill_(1.0)
|
825 |
+
|
826 |
+
|
827 |
+
class NewModel(NewPreTrainedModel):
|
828 |
+
"""
|
829 |
+
The bare New Model transformer outputting raw hidden-states without any specific head on top.
|
830 |
+
"""
|
831 |
+
|
832 |
+
def __init__(self, config: NewConfig, add_pooling_layer=False):
|
833 |
+
super().__init__(config)
|
834 |
+
self.config = config
|
835 |
+
|
836 |
+
self.embeddings = NewEmbeddings(config)
|
837 |
+
self.encoder = NewEncoder(config)
|
838 |
+
|
839 |
+
self.pooler = NewPooler(config) if add_pooling_layer else None
|
840 |
+
|
841 |
+
# Initialize weights and apply final processing
|
842 |
+
self.post_init()
|
843 |
+
|
844 |
+
def get_input_embeddings(self):
|
845 |
+
return self.embeddings.word_embeddings
|
846 |
+
|
847 |
+
def set_input_embeddings(self, value):
|
848 |
+
self.embeddings.word_embeddings = value
|
849 |
+
|
850 |
+
def forward(
|
851 |
+
self,
|
852 |
+
input_ids: Optional[torch.Tensor] = None,
|
853 |
+
attention_mask: Optional[torch.Tensor] = None,
|
854 |
+
length: Optional[List[int]] = None,
|
855 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
856 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
857 |
+
position_ids: Optional[torch.Tensor] = None,
|
858 |
+
head_mask: Optional[torch.Tensor] = None,
|
859 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
860 |
+
output_attentions: Optional[bool] = None,
|
861 |
+
output_hidden_states: Optional[bool] = None,
|
862 |
+
return_dict: Optional[bool] = None,
|
863 |
+
unpad_inputs: Optional[bool] = None,
|
864 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
865 |
+
r"""
|
866 |
+
length (`list` of length `batch_size`, *optional*):
|
867 |
+
If is `None`, return padded `last_hidden_state`.
|
868 |
+
subset_indices ():
|
869 |
+
pass
|
870 |
+
unpad_inputs (`bool`, *optional*):
|
871 |
+
pass
|
872 |
+
"""
|
873 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
874 |
+
output_hidden_states = (
|
875 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
876 |
+
)
|
877 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
878 |
+
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
|
879 |
+
output_padded = length is None
|
880 |
+
|
881 |
+
if input_ids is not None and inputs_embeds is not None:
|
882 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
883 |
+
elif input_ids is not None:
|
884 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
885 |
+
input_shape = input_ids.size()
|
886 |
+
elif inputs_embeds is not None:
|
887 |
+
input_shape = inputs_embeds.size()[:-1]
|
888 |
+
else:
|
889 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
890 |
+
|
891 |
+
# TODO: not used
|
892 |
+
# # Prepare head mask if needed
|
893 |
+
# # 1.0 in head_mask indicate we keep the head
|
894 |
+
# # attention_probs has shape bsz x n_heads x N x N
|
895 |
+
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
896 |
+
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
897 |
+
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
898 |
+
|
899 |
+
# Get embeddings, may unpad them
|
900 |
+
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
|
901 |
+
unpad_inputs,
|
902 |
+
input_ids=input_ids,
|
903 |
+
attention_mask=attention_mask,
|
904 |
+
length=length,
|
905 |
+
token_type_ids=token_type_ids,
|
906 |
+
position_ids=position_ids,
|
907 |
+
inputs_embeds=inputs_embeds
|
908 |
+
)
|
909 |
+
|
910 |
+
batch_size, seq_length = input_shape
|
911 |
+
if unpad_inputs and self.config.use_memory_efficient_attention:
|
912 |
+
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
913 |
+
else:
|
914 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
915 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
916 |
+
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
|
917 |
+
if self.config.use_memory_efficient_attention:
|
918 |
+
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
919 |
+
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
920 |
+
|
921 |
+
padding_inputs = None
|
922 |
+
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
|
923 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
924 |
+
if not self.config.use_memory_efficient_attention:
|
925 |
+
padding_inputs = (indices, *input_shape)
|
926 |
+
|
927 |
+
attention_scale = None
|
928 |
+
if self.config.logn_attention_scale:
|
929 |
+
logger.warning_once("TODO: logn_attention_scale")
|
930 |
+
# # attention scale log_512(input_len)
|
931 |
+
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
|
932 |
+
# # inference-time logn scale need clip 1
|
933 |
+
# if self.config.logn_attention_clip1:
|
934 |
+
# attention_scale.clip_(1)
|
935 |
+
# attention_scale = attention_scale[:, None, None, None]
|
936 |
+
# else:
|
937 |
+
# attention_scale = None
|
938 |
+
|
939 |
+
encoder_outputs = self.encoder(
|
940 |
+
embedding_output,
|
941 |
+
attention_bias=attention_bias,
|
942 |
+
rope_embeds=rope_embeds,
|
943 |
+
padding_inputs=padding_inputs,
|
944 |
+
attention_scale=attention_scale,
|
945 |
+
subset_indices=subset_indices,
|
946 |
+
head_mask=head_mask,
|
947 |
+
output_attentions=output_attentions,
|
948 |
+
output_hidden_states=output_hidden_states,
|
949 |
+
return_dict=return_dict,
|
950 |
+
)
|
951 |
+
sequence_output = encoder_outputs[0]
|
952 |
+
if unpad_inputs and output_padded:
|
953 |
+
sequence_output = pad_input(
|
954 |
+
sequence_output.squeeze(), indices, batch_size, seq_length
|
955 |
+
)
|
956 |
+
|
957 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
958 |
+
|
959 |
+
if not return_dict:
|
960 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
961 |
+
|
962 |
+
return BaseModelOutputWithPooling(
|
963 |
+
last_hidden_state=sequence_output,
|
964 |
+
pooler_output=pooled_output,
|
965 |
+
hidden_states=encoder_outputs.hidden_states,
|
966 |
+
attentions=encoder_outputs.attentions,
|
967 |
+
)
|
968 |
+
|
969 |
+
|
970 |
+
class NewLMPredictionHead(nn.Module):
|
971 |
+
def __init__(self, config):
|
972 |
+
super().__init__()
|
973 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
974 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
975 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
976 |
+
|
977 |
+
# The output weights are the same as the input embeddings, but there is
|
978 |
+
# an output-only bias for each token.
|
979 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
980 |
+
|
981 |
+
def forward(self, hidden_states):
|
982 |
+
hidden_states = self.dense(hidden_states)
|
983 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
984 |
+
hidden_states = self.norm(hidden_states)
|
985 |
+
hidden_states = self.decoder(hidden_states)
|
986 |
+
return hidden_states
|
987 |
+
|
988 |
+
|
989 |
+
class NewForMaskedLM(NewPreTrainedModel):
|
990 |
+
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
|
991 |
+
|
992 |
+
def __init__(self, config: NewConfig):
|
993 |
+
super().__init__(config)
|
994 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
995 |
+
self.lm_head = NewLMPredictionHead(config)
|
996 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
997 |
+
|
998 |
+
# Initialize weights and apply final processing
|
999 |
+
self.post_init()
|
1000 |
+
|
1001 |
+
def get_output_embeddings(self):
|
1002 |
+
return self.lm_head.decoder
|
1003 |
+
|
1004 |
+
def set_output_embeddings(self, new_embeddings):
|
1005 |
+
self.lm_head.decoder = new_embeddings
|
1006 |
+
|
1007 |
+
def forward(
|
1008 |
+
self,
|
1009 |
+
input_ids: Optional[torch.Tensor] = None,
|
1010 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1011 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1012 |
+
position_ids: Optional[torch.Tensor] = None,
|
1013 |
+
head_mask: Optional[torch.Tensor] = None,
|
1014 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1015 |
+
labels: Optional[torch.Tensor] = None,
|
1016 |
+
output_attentions: Optional[bool] = None,
|
1017 |
+
output_hidden_states: Optional[bool] = None,
|
1018 |
+
return_dict: Optional[bool] = None,
|
1019 |
+
unpad_inputs: Optional[bool] = None,
|
1020 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
1021 |
+
r"""
|
1022 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1023 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
1024 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
1025 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
1026 |
+
"""
|
1027 |
+
|
1028 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1029 |
+
|
1030 |
+
if labels is None or not self.new.config.unpad_inputs:
|
1031 |
+
length = None
|
1032 |
+
subset_indices = None
|
1033 |
+
else:
|
1034 |
+
length = attention_mask.sum(-1).tolist()
|
1035 |
+
labels = labels[attention_mask.bool()].unsqueeze(0)
|
1036 |
+
subset_indices = labels > -100
|
1037 |
+
|
1038 |
+
outputs = self.new(
|
1039 |
+
input_ids,
|
1040 |
+
attention_mask=attention_mask,
|
1041 |
+
length=length,
|
1042 |
+
subset_indices=subset_indices,
|
1043 |
+
token_type_ids=token_type_ids,
|
1044 |
+
position_ids=position_ids,
|
1045 |
+
head_mask=head_mask,
|
1046 |
+
inputs_embeds=inputs_embeds,
|
1047 |
+
output_attentions=output_attentions,
|
1048 |
+
output_hidden_states=output_hidden_states,
|
1049 |
+
return_dict=return_dict,
|
1050 |
+
unpad_inputs=unpad_inputs,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
sequence_output = outputs[0]
|
1054 |
+
prediction_scores = self.lm_head(sequence_output)
|
1055 |
+
|
1056 |
+
masked_lm_loss = None
|
1057 |
+
if labels is not None:
|
1058 |
+
if subset_indices is None:
|
1059 |
+
mask = attention_mask.bool()
|
1060 |
+
prediction_scores = prediction_scores[mask]
|
1061 |
+
labels = labels[mask]
|
1062 |
+
else:
|
1063 |
+
labels = labels[subset_indices]
|
1064 |
+
masked_lm_loss = self.loss_fct(prediction_scores, labels)
|
1065 |
+
|
1066 |
+
if not return_dict:
|
1067 |
+
output = (prediction_scores,) + outputs[2:]
|
1068 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1069 |
+
|
1070 |
+
return MaskedLMOutput(
|
1071 |
+
loss=masked_lm_loss,
|
1072 |
+
logits=prediction_scores,
|
1073 |
+
hidden_states=outputs.hidden_states,
|
1074 |
+
attentions=outputs.attentions,
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
|
1078 |
+
class NewForSequenceClassification(NewPreTrainedModel):
|
1079 |
+
def __init__(self, config):
|
1080 |
+
super().__init__(config)
|
1081 |
+
self.num_labels = config.num_labels
|
1082 |
+
self.config = config
|
1083 |
+
|
1084 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
1085 |
+
classifier_dropout = (
|
1086 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1087 |
+
)
|
1088 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1089 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1090 |
+
|
1091 |
+
# Initialize weights and apply final processing
|
1092 |
+
self.post_init()
|
1093 |
+
|
1094 |
+
def forward(
|
1095 |
+
self,
|
1096 |
+
input_ids: Optional[torch.Tensor] = None,
|
1097 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1098 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1099 |
+
position_ids: Optional[torch.Tensor] = None,
|
1100 |
+
head_mask: Optional[torch.Tensor] = None,
|
1101 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1102 |
+
labels: Optional[torch.Tensor] = None,
|
1103 |
+
output_attentions: Optional[bool] = None,
|
1104 |
+
output_hidden_states: Optional[bool] = None,
|
1105 |
+
return_dict: Optional[bool] = None,
|
1106 |
+
unpad_inputs: Optional[bool] = None,
|
1107 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
1108 |
+
r"""
|
1109 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1110 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1111 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1112 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1113 |
+
"""
|
1114 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1115 |
+
|
1116 |
+
outputs = self.new(
|
1117 |
+
input_ids,
|
1118 |
+
attention_mask=attention_mask,
|
1119 |
+
token_type_ids=token_type_ids,
|
1120 |
+
position_ids=position_ids,
|
1121 |
+
head_mask=head_mask,
|
1122 |
+
inputs_embeds=inputs_embeds,
|
1123 |
+
output_attentions=output_attentions,
|
1124 |
+
output_hidden_states=output_hidden_states,
|
1125 |
+
return_dict=return_dict,
|
1126 |
+
unpad_inputs=unpad_inputs,
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
pooled_output = outputs[1]
|
1130 |
+
|
1131 |
+
pooled_output = self.dropout(pooled_output)
|
1132 |
+
logits = self.classifier(pooled_output)
|
1133 |
+
|
1134 |
+
loss = None
|
1135 |
+
if labels is not None:
|
1136 |
+
if self.config.problem_type is None:
|
1137 |
+
if self.num_labels == 1:
|
1138 |
+
self.config.problem_type = "regression"
|
1139 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1140 |
+
self.config.problem_type = "single_label_classification"
|
1141 |
+
else:
|
1142 |
+
self.config.problem_type = "multi_label_classification"
|
1143 |
+
|
1144 |
+
if self.config.problem_type == "regression":
|
1145 |
+
loss_fct = nn.MSELoss()
|
1146 |
+
if self.num_labels == 1:
|
1147 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1148 |
+
else:
|
1149 |
+
loss = loss_fct(logits, labels)
|
1150 |
+
elif self.config.problem_type == "single_label_classification":
|
1151 |
+
loss_fct = nn.CrossEntropyLoss()
|
1152 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1153 |
+
elif self.config.problem_type == "multi_label_classification":
|
1154 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
1155 |
+
loss = loss_fct(logits, labels)
|
1156 |
+
|
1157 |
+
if not return_dict:
|
1158 |
+
output = (logits,) + outputs[2:]
|
1159 |
+
return ((loss,) + output) if loss is not None else output
|
1160 |
+
|
1161 |
+
return SequenceClassifierOutput(
|
1162 |
+
loss=loss,
|
1163 |
+
logits=logits,
|
1164 |
+
hidden_states=outputs.hidden_states,
|
1165 |
+
attentions=outputs.attentions,
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
|
1169 |
+
class NewForMultipleChoice(NewPreTrainedModel):
|
1170 |
+
def __init__(self, config):
|
1171 |
+
super().__init__(config)
|
1172 |
+
|
1173 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
1174 |
+
classifier_dropout = (
|
1175 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1176 |
+
)
|
1177 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1178 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1179 |
+
|
1180 |
+
# Initialize weights and apply final processing
|
1181 |
+
self.post_init()
|
1182 |
+
|
1183 |
+
def forward(
|
1184 |
+
self,
|
1185 |
+
input_ids: Optional[torch.Tensor] = None,
|
1186 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1187 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1188 |
+
position_ids: Optional[torch.Tensor] = None,
|
1189 |
+
head_mask: Optional[torch.Tensor] = None,
|
1190 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1191 |
+
labels: Optional[torch.Tensor] = None,
|
1192 |
+
output_attentions: Optional[bool] = None,
|
1193 |
+
output_hidden_states: Optional[bool] = None,
|
1194 |
+
return_dict: Optional[bool] = None,
|
1195 |
+
unpad_inputs: Optional[bool] = None,
|
1196 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
1197 |
+
r"""
|
1198 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1199 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1200 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1201 |
+
`input_ids` above)
|
1202 |
+
"""
|
1203 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1204 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1205 |
+
|
1206 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1207 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1208 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1209 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1210 |
+
inputs_embeds = (
|
1211 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1212 |
+
if inputs_embeds is not None
|
1213 |
+
else None
|
1214 |
+
)
|
1215 |
+
|
1216 |
+
outputs = self.new(
|
1217 |
+
input_ids,
|
1218 |
+
attention_mask=attention_mask,
|
1219 |
+
token_type_ids=token_type_ids,
|
1220 |
+
position_ids=position_ids,
|
1221 |
+
head_mask=head_mask,
|
1222 |
+
inputs_embeds=inputs_embeds,
|
1223 |
+
output_attentions=output_attentions,
|
1224 |
+
output_hidden_states=output_hidden_states,
|
1225 |
+
return_dict=return_dict,
|
1226 |
+
unpad_inputs=unpad_inputs,
|
1227 |
+
)
|
1228 |
+
|
1229 |
+
pooled_output = outputs[1]
|
1230 |
+
|
1231 |
+
pooled_output = self.dropout(pooled_output)
|
1232 |
+
logits = self.classifier(pooled_output)
|
1233 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1234 |
+
|
1235 |
+
loss = None
|
1236 |
+
if labels is not None:
|
1237 |
+
loss_fct = nn.CrossEntropyLoss()
|
1238 |
+
loss = loss_fct(reshaped_logits, labels)
|
1239 |
+
|
1240 |
+
if not return_dict:
|
1241 |
+
output = (reshaped_logits,) + outputs[2:]
|
1242 |
+
return ((loss,) + output) if loss is not None else output
|
1243 |
+
|
1244 |
+
return MultipleChoiceModelOutput(
|
1245 |
+
loss=loss,
|
1246 |
+
logits=reshaped_logits,
|
1247 |
+
hidden_states=outputs.hidden_states,
|
1248 |
+
attentions=outputs.attentions,
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
|
1252 |
+
class NewForTokenClassification(NewPreTrainedModel):
|
1253 |
+
def __init__(self, config):
|
1254 |
+
super().__init__(config)
|
1255 |
+
self.num_labels = config.num_labels
|
1256 |
+
|
1257 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
1258 |
+
classifier_dropout = (
|
1259 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
1260 |
+
)
|
1261 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1262 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1263 |
+
|
1264 |
+
# Initialize weights and apply final processing
|
1265 |
+
self.post_init()
|
1266 |
+
|
1267 |
+
def forward(
|
1268 |
+
self,
|
1269 |
+
input_ids: Optional[torch.Tensor] = None,
|
1270 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1271 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1272 |
+
position_ids: Optional[torch.Tensor] = None,
|
1273 |
+
head_mask: Optional[torch.Tensor] = None,
|
1274 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1275 |
+
labels: Optional[torch.Tensor] = None,
|
1276 |
+
output_attentions: Optional[bool] = None,
|
1277 |
+
output_hidden_states: Optional[bool] = None,
|
1278 |
+
return_dict: Optional[bool] = None,
|
1279 |
+
unpad_inputs: Optional[bool] = None,
|
1280 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
1281 |
+
r"""
|
1282 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1283 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1284 |
+
"""
|
1285 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1286 |
+
|
1287 |
+
outputs = self.new(
|
1288 |
+
input_ids,
|
1289 |
+
attention_mask=attention_mask,
|
1290 |
+
token_type_ids=token_type_ids,
|
1291 |
+
position_ids=position_ids,
|
1292 |
+
head_mask=head_mask,
|
1293 |
+
inputs_embeds=inputs_embeds,
|
1294 |
+
output_attentions=output_attentions,
|
1295 |
+
output_hidden_states=output_hidden_states,
|
1296 |
+
return_dict=return_dict,
|
1297 |
+
unpad_inputs=unpad_inputs,
|
1298 |
+
)
|
1299 |
+
|
1300 |
+
sequence_output = outputs[0]
|
1301 |
+
|
1302 |
+
sequence_output = self.dropout(sequence_output)
|
1303 |
+
logits = self.classifier(sequence_output)
|
1304 |
+
|
1305 |
+
loss = None
|
1306 |
+
if labels is not None:
|
1307 |
+
loss_fct = nn.CrossEntropyLoss()
|
1308 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1309 |
+
|
1310 |
+
if not return_dict:
|
1311 |
+
output = (logits,) + outputs[2:]
|
1312 |
+
return ((loss,) + output) if loss is not None else output
|
1313 |
+
|
1314 |
+
return TokenClassifierOutput(
|
1315 |
+
loss=loss,
|
1316 |
+
logits=logits,
|
1317 |
+
hidden_states=outputs.hidden_states,
|
1318 |
+
attentions=outputs.attentions,
|
1319 |
+
)
|
1320 |
+
|
1321 |
+
|
1322 |
+
class NewForQuestionAnswering(NewPreTrainedModel):
|
1323 |
+
def __init__(self, config):
|
1324 |
+
super().__init__(config)
|
1325 |
+
self.num_labels = config.num_labels
|
1326 |
+
|
1327 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
1328 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1329 |
+
|
1330 |
+
# Initialize weights and apply final processing
|
1331 |
+
self.post_init()
|
1332 |
+
|
1333 |
+
def forward(
|
1334 |
+
self,
|
1335 |
+
input_ids: Optional[torch.Tensor] = None,
|
1336 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1337 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1338 |
+
position_ids: Optional[torch.Tensor] = None,
|
1339 |
+
head_mask: Optional[torch.Tensor] = None,
|
1340 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1341 |
+
start_positions: Optional[torch.Tensor] = None,
|
1342 |
+
end_positions: Optional[torch.Tensor] = None,
|
1343 |
+
output_attentions: Optional[bool] = None,
|
1344 |
+
output_hidden_states: Optional[bool] = None,
|
1345 |
+
return_dict: Optional[bool] = None,
|
1346 |
+
unpad_inputs: Optional[bool] = None,
|
1347 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
1348 |
+
r"""
|
1349 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1350 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1351 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1352 |
+
are not taken into account for computing the loss.
|
1353 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1354 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1355 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1356 |
+
are not taken into account for computing the loss.
|
1357 |
+
"""
|
1358 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1359 |
+
|
1360 |
+
outputs = self.new(
|
1361 |
+
input_ids,
|
1362 |
+
attention_mask=attention_mask,
|
1363 |
+
token_type_ids=token_type_ids,
|
1364 |
+
position_ids=position_ids,
|
1365 |
+
head_mask=head_mask,
|
1366 |
+
inputs_embeds=inputs_embeds,
|
1367 |
+
output_attentions=output_attentions,
|
1368 |
+
output_hidden_states=output_hidden_states,
|
1369 |
+
return_dict=return_dict,
|
1370 |
+
unpad_inputs=unpad_inputs,
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
sequence_output = outputs[0]
|
1374 |
+
|
1375 |
+
logits = self.qa_outputs(sequence_output)
|
1376 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1377 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1378 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1379 |
+
|
1380 |
+
total_loss = None
|
1381 |
+
if start_positions is not None and end_positions is not None:
|
1382 |
+
# If we are on multi-GPU, split add a dimension
|
1383 |
+
if len(start_positions.size()) > 1:
|
1384 |
+
start_positions = start_positions.squeeze(-1)
|
1385 |
+
if len(end_positions.size()) > 1:
|
1386 |
+
end_positions = end_positions.squeeze(-1)
|
1387 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1388 |
+
ignored_index = start_logits.size(1)
|
1389 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1390 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1391 |
+
|
1392 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
1393 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1394 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1395 |
+
total_loss = (start_loss + end_loss) / 2
|
1396 |
+
|
1397 |
+
if not return_dict:
|
1398 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1399 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1400 |
+
|
1401 |
+
return QuestionAnsweringModelOutput(
|
1402 |
+
loss=total_loss,
|
1403 |
+
start_logits=start_logits,
|
1404 |
+
end_logits=end_logits,
|
1405 |
+
hidden_states=outputs.hidden_states,
|
1406 |
+
attentions=outputs.attentions,
|
1407 |
+
)
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|