twright8 commited on
Commit
6f8df50
1 Parent(s): 5f48dc4

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ metrics:
4
+ - f1
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget: []
13
+ inference: false
14
+ model-index:
15
+ - name: SetFit
16
+ results:
17
+ - task:
18
+ type: text-classification
19
+ name: Text Classification
20
+ dataset:
21
+ name: Unknown
22
+ type: unknown
23
+ split: test
24
+ metrics:
25
+ - type: f1
26
+ value: 0.9411764705882353
27
+ name: F1
28
+ - type: accuracy
29
+ value: 0.9743589743589743
30
+ name: Accuracy
31
+ ---
32
+
33
+ # SetFit
34
+
35
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. A [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance is used for classification.
36
+
37
+ The model has been trained using an efficient few-shot learning technique that involves:
38
+
39
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
40
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
41
+
42
+ ## Model Details
43
+
44
+ ### Model Description
45
+ - **Model Type:** SetFit
46
+ <!-- - **Sentence Transformer:** [Unknown](https://huggingface.co/unknown) -->
47
+ - **Classification head:** a [SetFitHead](huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) instance
48
+ - **Maximum Sequence Length:** 512 tokens
49
+ <!-- - **Number of Classes:** Unknown -->
50
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
51
+ <!-- - **Language:** Unknown -->
52
+ <!-- - **License:** Unknown -->
53
+
54
+ ### Model Sources
55
+
56
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
57
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
58
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
59
+
60
+ ## Evaluation
61
+
62
+ ### Metrics
63
+ | Label | F1 | Accuracy |
64
+ |:--------|:-------|:---------|
65
+ | **all** | 0.9412 | 0.9744 |
66
+
67
+ ## Uses
68
+
69
+ ### Direct Use for Inference
70
+
71
+ First install the SetFit library:
72
+
73
+ ```bash
74
+ pip install setfit
75
+ ```
76
+
77
+ Then you can load this model and run inference.
78
+
79
+ ```python
80
+ from setfit import SetFitModel
81
+
82
+ # Download from the 🤗 Hub
83
+ model = SetFitModel.from_pretrained("twright8/setfit_lobbying_classifier_test")
84
+ # Run inference
85
+ preds = model("I loved the spiderman movie!")
86
+ ```
87
+
88
+ <!--
89
+ ### Downstream Use
90
+
91
+ *List how someone could finetune this model on their own dataset.*
92
+ -->
93
+
94
+ <!--
95
+ ### Out-of-Scope Use
96
+
97
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
98
+ -->
99
+
100
+ <!--
101
+ ## Bias, Risks and Limitations
102
+
103
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
104
+ -->
105
+
106
+ <!--
107
+ ### Recommendations
108
+
109
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
110
+ -->
111
+
112
+ ## Training Details
113
+
114
+ ### Framework Versions
115
+ - Python: 3.10.12
116
+ - SetFit: 1.0.3
117
+ - Sentence Transformers: 3.0.1
118
+ - Transformers: 4.39.0
119
+ - PyTorch: 2.3.1+cu118
120
+ - Datasets: 2.20.0
121
+ - Tokenizers: 0.15.2
122
+
123
+ ## Citation
124
+
125
+ ### BibTeX
126
+ ```bibtex
127
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
128
+ doi = {10.48550/ARXIV.2209.11055},
129
+ url = {https://arxiv.org/abs/2209.11055},
130
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
131
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
132
+ title = {Efficient Few-Shot Learning Without Prompts},
133
+ publisher = {arXiv},
134
+ year = {2022},
135
+ copyright = {Creative Commons Attribution 4.0 International}
136
+ }
137
+ ```
138
+
139
+ <!--
140
+ ## Glossary
141
+
142
+ *Clearly define terms in order to be accessible across audiences.*
143
+ -->
144
+
145
+ <!--
146
+ ## Model Card Authors
147
+
148
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
149
+ -->
150
+
151
+ <!--
152
+ ## Model Card Contact
153
+
154
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
155
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_854",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.39.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11f4b60615bc978b2f056c0eaa311082802fbbeee70e340d21a917ebaf3c7cf9
3
+ size 437951328
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f10f24bf93b4c4afc93c1e90359a9126ff104fff2163923b45aa619f5373cd1
3
+ size 13856
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff