update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- te_dx_jp
|
7 |
+
model-index:
|
8 |
+
- name: t5-base-TEDxJP-11body-0context
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-base-TEDxJP-11body-0context
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [sonoisa/t5-base-japanese](https://huggingface.co/sonoisa/t5-base-japanese) on the te_dx_jp dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8068
|
20 |
+
- Wer: 0.1976
|
21 |
+
- Mer: 0.1904
|
22 |
+
- Wil: 0.2816
|
23 |
+
- Wip: 0.7184
|
24 |
+
- Hits: 602335
|
25 |
+
- Substitutions: 75050
|
26 |
+
- Deletions: 39435
|
27 |
+
- Insertions: 27185
|
28 |
+
- Cer: 0.1625
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 0.0001
|
48 |
+
- train_batch_size: 64
|
49 |
+
- eval_batch_size: 8
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
54 |
+
- num_epochs: 10
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Mer | Wil | Wip | Hits | Substitutions | Deletions | Insertions | Cer |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:------:|:------:|:-------------:|:---------:|:----------:|:------:|
|
60 |
+
| 0.8909 | 1.0 | 746 | 0.7722 | 0.3120 | 0.2861 | 0.3989 | 0.6011 | 558138 | 99887 | 58795 | 64983 | 0.2652 |
|
61 |
+
| 0.6786 | 2.0 | 1492 | 0.7021 | 0.2226 | 0.2122 | 0.3069 | 0.6931 | 592242 | 78773 | 45805 | 34978 | 0.1862 |
|
62 |
+
| 0.5627 | 3.0 | 2238 | 0.6996 | 0.2104 | 0.2016 | 0.2942 | 0.7058 | 597381 | 76593 | 42846 | 31392 | 0.1752 |
|
63 |
+
| 0.489 | 4.0 | 2984 | 0.7161 | 0.2030 | 0.1952 | 0.2865 | 0.7135 | 599808 | 75155 | 41857 | 28506 | 0.1684 |
|
64 |
+
| 0.4355 | 5.0 | 3730 | 0.7389 | 0.2000 | 0.1924 | 0.2837 | 0.7163 | 601815 | 75247 | 39758 | 28335 | 0.1651 |
|
65 |
+
| 0.3836 | 6.0 | 4476 | 0.7537 | 0.1992 | 0.1918 | 0.2829 | 0.7171 | 601846 | 75046 | 39928 | 27815 | 0.1640 |
|
66 |
+
| 0.3617 | 7.0 | 5222 | 0.7743 | 0.1995 | 0.1918 | 0.2832 | 0.7168 | 602287 | 75268 | 39265 | 28445 | 0.1642 |
|
67 |
+
| 0.3258 | 8.0 | 5968 | 0.7907 | 0.1971 | 0.1899 | 0.2809 | 0.7191 | 602800 | 74887 | 39133 | 27258 | 0.1620 |
|
68 |
+
| 0.3225 | 9.0 | 6714 | 0.8035 | 0.1981 | 0.1908 | 0.2823 | 0.7177 | 602418 | 75372 | 39030 | 27625 | 0.1630 |
|
69 |
+
| 0.3162 | 10.0 | 7460 | 0.8068 | 0.1976 | 0.1904 | 0.2816 | 0.7184 | 602335 | 75050 | 39435 | 27185 | 0.1625 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.12.5
|
75 |
+
- Pytorch 1.10.0+cu102
|
76 |
+
- Datasets 1.15.1
|
77 |
+
- Tokenizers 0.10.3
|