File size: 4,306 Bytes
f8624a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# bertopic_WGnews_Oct31
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("tyrealqian/bertopic_WGnews_Oct31")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 28
* Number of training documents: 6196
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | beijing - winter - olympics - winter olympics - olympic | 18 | -1_beijing_winter_olympics_winter olympics |
| 0 | gold - medal - olympics - beijing - womens | 2054 | 0_gold_medal_olympics_beijing |
| 1 | covid - olympics - beijing - cases - winter | 633 | 1_covid_olympics_beijing_cases |
| 2 | gold - gu - womens - chinas - mens | 524 | 2_gold_gu_womens_chinas |
| 3 | president - xi - xi jinping - jinping - president xi | 388 | 3_president_xi_xi jinping_jinping |
| 4 | boycott - diplomatic - diplomatic boycott - boycott beijing - rights | 372 | 4_boycott_diplomatic_diplomatic boycott_boycott beijing |
| 5 | dwen - mascot - bing - bing dwen - dwen dwen | 328 | 5_dwen_mascot_bing_bing dwen |
| 6 | ceremony - opening - opening ceremony - beijing - ceremony beijing | 305 | 6_ceremony_opening_opening ceremony_beijing |
| 7 | kamila - valieva - kamila valieva - russian - figure | 249 | 7_kamila_valieva_kamila valieva_russian |
| 8 | torch - flame - relay - torch relay - olympic | 208 | 8_torch_flame_relay_torch relay |
| 9 | venue - ice - venues - zhangjiakou - beijing | 194 | 9_venue_ice_venues_zhangjiakou |
| 10 | sports - winter sports - winter - globalink - snow | 159 | 10_sports_winter sports_winter_globalink |
| 11 | food - robot - robots - served - serving | 122 | 11_food_robot_robots_served |
| 12 | green - carbon - games - beijing - winter | 120 | 12_green_carbon_games_beijing |
| 13 | coverage - heres - day - olympics - gold | 90 | 13_coverage_heres_day_olympics |
| 14 | bach - thomas bach - thomas - president thomas - ioc | 59 | 14_bach_thomas bach_thomas_president thomas |
| 15 | snow - snowfall - heavy - weather - heavy snowfall | 48 | 15_snow_snowfall_heavy_weather |
| 16 | bank - commemorative - digital - yuan - set | 43 | 16_bank_commemorative_digital_yuan |
| 17 | paralympic - paralympic games - games - paralympic winter - winter paralympic | 37 | 17_paralympic_paralympic games_games_paralympic winter |
| 18 | phones - personal - burner - app - smartphonelike | 34 | 18_phones_personal_burner_app |
| 19 | nbc - nbcuniversal - ads - ratings - nbcs | 31 | 19_nbc_nbcuniversal_ads_ratings |
| 20 | watch beijing - watch - athletes watch - know - names | 27 | 20_watch beijing_watch_athletes watch_know |
| 21 | ukraine - invasion - russian - invasion ukraine - ukraine beijing | 27 | 21_ukraine_invasion_russian_invasion ukraine |
| 22 | city - summer winter - summer - host summer - city host | 27 | 22_city_summer winter_summer_host summer |
| 23 | leduc - nonbinary - timothy leduc - timothy - openly | 26 | 23_leduc_nonbinary_timothy leduc_timothy |
| 24 | ralph lauren - lauren - ralph - uniforms - team | 26 | 24_ralph lauren_lauren_ralph_uniforms |
| 25 | peng - shuai - peng shuai - tennis - chinese tennis | 25 | 25_peng_shuai_peng shuai_tennis |
| 26 | women - female athletes - record - athletes - female | 22 | 26_women_female athletes_record_athletes |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: True
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.39
* UMAP: 0.5.7
* Pandas: 2.2.2
* Scikit-Learn: 1.5.2
* Sentence-transformers: 3.2.1
* Transformers: 4.44.2
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.10.12
|