--- base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: wav2vec2-base-timit-fine-tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: timit_asr type: timit_asr config: clean split: test args: clean metrics: - name: Wer type: wer value: 0.4087225712464718 --- # wav2vec2-base-timit-fine-tuned This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4216 - Wer: 0.4087 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.1612 | 0.8621 | 100 | 3.1181 | 1.0 | | 2.978 | 1.7241 | 200 | 2.9722 | 1.0 | | 2.9185 | 2.5862 | 300 | 2.9098 | 1.0 | | 2.1282 | 3.4483 | 400 | 2.0066 | 1.0247 | | 1.1234 | 4.3103 | 500 | 1.0197 | 0.8393 | | 0.602 | 5.1724 | 600 | 0.6714 | 0.6600 | | 0.5032 | 6.0345 | 700 | 0.5285 | 0.5659 | | 0.3101 | 6.8966 | 800 | 0.4819 | 0.5282 | | 0.3432 | 7.7586 | 900 | 0.4653 | 0.5272 | | 0.1922 | 8.6207 | 1000 | 0.4672 | 0.4918 | | 0.2284 | 9.4828 | 1100 | 0.4834 | 0.4870 | | 0.1372 | 10.3448 | 1200 | 0.4380 | 0.4727 | | 0.1105 | 11.2069 | 1300 | 0.4509 | 0.4594 | | 0.0992 | 12.0690 | 1400 | 0.4196 | 0.4544 | | 0.1226 | 12.9310 | 1500 | 0.4237 | 0.4321 | | 0.1013 | 13.7931 | 1600 | 0.4113 | 0.4298 | | 0.0661 | 14.6552 | 1700 | 0.4038 | 0.4276 | | 0.0901 | 15.5172 | 1800 | 0.4321 | 0.4225 | | 0.053 | 16.3793 | 1900 | 0.4076 | 0.4236 | | 0.0805 | 17.2414 | 2000 | 0.4336 | 0.4156 | | 0.049 | 18.1034 | 2100 | 0.4193 | 0.4114 | | 0.0717 | 18.9655 | 2200 | 0.4139 | 0.4091 | | 0.0389 | 19.8276 | 2300 | 0.4216 | 0.4087 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0a0+git71dd2de - Datasets 2.19.1 - Tokenizers 0.19.1