File size: 1,750 Bytes
97e1b27 67b19bd 97e1b27 67b19bd 57f5cfc 67b19bd 57f5cfc 67b19bd 97e1b27 44ac826 35168a4 97e1b27 67b19bd 97e1b27 44ac826 97e1b27 44ac826 97e1b27 44ac826 97e1b27 44ac826 97e1b27 44ac826 97e1b27 44ac826 97e1b27 67b19bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
base_model: ubaada/pegasus-x-large-booksum-16k
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: pegasus-x-large-booksum-16k
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/theubaada/huggingface/runs/fvqvjsw6)
# pegasus-x-large-booksum-16k
This model is a fine-tuned version of [ubaada/pegasus-x-large-booksum-16k](https://huggingface.co/ubaada/pegasus-x-large-booksum-16k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8948
- Rouge1: 0.3044
- Rouge2: 0.0517
- Rougel: 0.1398
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 8
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
| 1.3001 | 0.9992 | 314 | 1.8948 | 0.3044 | 0.0517 | 0.1398 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.2.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|