Update README.md
Browse files
README.md
CHANGED
@@ -5,3 +5,89 @@ widget:
|
|
5 |
- text: "[CLS] 青 山 削 芙 蓉 ,"
|
6 |
|
7 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- text: "[CLS] 青 山 削 芙 蓉 ,"
|
6 |
|
7 |
---
|
8 |
+
|
9 |
+
# Chinese GPT2 Language Models
|
10 |
+
|
11 |
+
## Model description
|
12 |
+
|
13 |
+
This is the set of two Chinese GPT2 language models pre-trained by [UER-py](https://www.aclweb.org/anthology/D19-3041.pdf).
|
14 |
+
|
15 |
+
You can download the two Chinese GPT2 language models via HuggingFace from the links below:
|
16 |
+
|
17 |
+
| Model | [gpt2-chinese-poem][poem] | [gpt2-chinese-couplet][couplet] |
|
18 |
+
| :-----------: | :------------------------------------------: | :-------------------------------------: |
|
19 |
+
| Training data | Contains about 800,000 chinese ancient poems | contains about 700,000 chinese couplets |
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
## How to use
|
24 |
+
|
25 |
+
Because the parameter ***skip_special_tokens*** is used in the ***pipelines.py*** , special tokens such as [SEP], [UNK] will be deleted, and the output results may not be neat.
|
26 |
+
|
27 |
+
You can use this model directly with a pipeline for text generation:
|
28 |
+
|
29 |
+
When the parameter ***skip_special_tokens*** is True:
|
30 |
+
|
31 |
+
```python
|
32 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
33 |
+
>>> from transformers import TextGenerationPipeline,
|
34 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
35 |
+
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
36 |
+
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
37 |
+
>>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True)
|
38 |
+
[{'generated_text': '[CLS]梅 山 如 积 翠 , 的 手 堪 捧 。 遥 遥 仙 人 尉 , 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 , 石 乳 甘 于 。 行 将 解 尘 缨 , 于 焉 蹈 高 踵 。 我'}]
|
39 |
+
```
|
40 |
+
|
41 |
+
When the parameter ***skip_special_tokens*** is Flase:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from transformers import BertTokenizer, GPT2LMHeadModel, TextGenerationPipeline
|
45 |
+
>>> from transformers import TextGenerationPipeline,
|
46 |
+
>>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem")
|
47 |
+
>>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem")
|
48 |
+
>>> text_generator = TextGenerationPipeline(model, tokenizer)
|
49 |
+
>>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True)
|
50 |
+
[{'generated_text': '[CLS]梅 山 如 积 翠 , 的 [UNK] 手 堪 捧 。 遥 遥 仙 人 尉 , 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 , 石 乳 甘 可 捧 。 银 汉 迟 不 来 , 槎 头 欲 谁 揽 。 何'}]
|
51 |
+
```
|
52 |
+
|
53 |
+
## Training data
|
54 |
+
|
55 |
+
Contains about 800,000 chinese ancient poems.
|
56 |
+
|
57 |
+
## Training procedure
|
58 |
+
|
59 |
+
Models are pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 200,000 steps with a sequence length of 128.
|
60 |
+
|
61 |
+
```
|
62 |
+
python3 preprocess.py --corpus_path corpora/poem.txt \
|
63 |
+
--vocab_path models/google_zh_vocab.txt \
|
64 |
+
--dataset_path poem.pt --processes_num 16 \
|
65 |
+
--seq_length 128 --target lm
|
66 |
+
```
|
67 |
+
|
68 |
+
```
|
69 |
+
python3 pretrain.py --dataset_path poem.pt \
|
70 |
+
--vocab_path models/google_zh_vocab.txt \
|
71 |
+
--output_model_path models/poem_gpt_base_model.bin \
|
72 |
+
--config_path models/bert_base_config.json --learning_rate 5e-4 \
|
73 |
+
--tie_weight --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
|
74 |
+
--batch_size 64 --report_steps 1000 \
|
75 |
+
--save_checkpoint_steps 50000 --total_steps 200000 \
|
76 |
+
--embedding gpt --encoder gpt2 --target lm
|
77 |
+
|
78 |
+
```
|
79 |
+
|
80 |
+
### BibTeX entry and citation info
|
81 |
+
|
82 |
+
```
|
83 |
+
@article{zhao2019uer,
|
84 |
+
title={UER: An Open-Source Toolkit for Pre-training Models},
|
85 |
+
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
|
86 |
+
journal={EMNLP-IJCNLP 2019},
|
87 |
+
pages={241},
|
88 |
+
year={2019}
|
89 |
+
}
|
90 |
+
```
|
91 |
+
|
92 |
+
[poem]: https://huggingface.co/uer/gpt2-chinese-poem
|
93 |
+
[couplet]: https://huggingface.co/uer/gpt2-chinese-couplet
|