--- language: zh widget: - text: "[CLS] 万 叠 春 山 积 雨 晴 ," - text: "[CLS] 青 山 削 芙 蓉 ," --- # Chinese Poem GPT2 Model ## Model description The model is used to generate Chinese ancient poems. You can download the model either from the [GPT2-Chinese Github page](https://github.com/Morizeyao/GPT2-Chinese), or via HuggingFace from the link [gpt2-chinese-poem][poem]. Since the parameter skip_special_tokens is used in the pipelines.py, special tokens such as [SEP], [UNK] will be deleted, and the output results may not be neat. ## How to use You can use the model directly with a pipeline for text generation: When the parameter skip_special_tokens is True: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 的 手 堪 捧 。 遥 遥 仙 人 尉 , 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 , 石 乳 甘 于 。 行 将 解 尘 缨 , 于 焉 蹈 高 踵 。 我'}] ``` When the parameter skip_special_tokens is False: ```python >>> from transformers import BertTokenizer, GPT2LMHeadModel,TextGenerationPipeline >>> tokenizer = BertTokenizer.from_pretrained("uer/gpt2-chinese-poem") >>> model = GPT2LMHeadModel.from_pretrained("uer/gpt2-chinese-poem") >>> text_generator = TextGenerationPipeline(model, tokenizer) >>> text_generator("[CLS]梅 山 如 积 翠 ,", max_length=50, do_sample=True) [{'generated_text': '[CLS]梅 山 如 积 翠 , 的 [UNK] 手 堪 捧 。 遥 遥 仙 人 尉 , 盘 盘 故 时 陇 。 丹 泉 清 可 鉴 , 石 乳 甘 可 捧 。 银 汉 迟 不 来 , 槎 头 欲 谁 揽 。 何'}] ``` ## Training data Training data contains 800,000 Chinese ancient poems which are collected by [chinese-poetry](https://github.com/chinese-poetry/chinese-poetry) and [Poetry](https://github.com/Werneror/Poetry) projects. ## Training procedure The model is pre-trained by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud TI-ONE](https://cloud.tencent.com/product/tione/). We pre-train 200,000 steps with a sequence length of 128. ``` python3 preprocess.py --corpus_path corpora/poem.txt \ --vocab_path models/google_zh_vocab.txt \ --dataset_path poem_dataset.pt --processes_num 16 \ --seq_length 128 --target lm ``` ``` python3 pretrain.py --dataset_path poem_dataset.pt \ --vocab_path models/google_zh_vocab.txt \ --output_model_path models/poem_gpt2_base_model.bin \ --config_path models/bert_base_config.json --learning_rate 5e-4 \ --tie_weight --world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \ --embedding word_pos --remove_embedding_layernorm \ --encoder transformer --mask causal --target lm \ --layernorm_positioning pre --batch_size 64 --report_steps 1000 \ --save_checkpoint_steps 50000 --total_steps 200000 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_gpt2_from_uer_to_huggingface.py --input_model_path poem_gpt2_base_model.bin-200000 \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ``` [poem]: https://huggingface.co/uer/gpt2-chinese-poem