--- language: Chinese pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers license: apache-2.0 widget: source_sentence: "那个人很开心" sentences: - 那个人非常开心 - 那只猫很开心 - 那个人在吃东西 --- # Chinese Sentence BERT ## Model description This is the sentence embedding model pre-trained by [UER-py](https://github.com/dbiir/UER-py/), which is introduced in [this paper](https://arxiv.org/abs/1909.05658). ## Training data [ChineseTextualInference](https://github.com/liuhuanyong/ChineseTextualInference/) is used as training data. ## Training procedure The model is fine-tuned by [UER-py](https://github.com/dbiir/UER-py/) on [Tencent Cloud](https://cloud.tencent.com/). We fine-tune five epochs with a sequence length of 128 on the basis of the pre-trained model [chinese_roberta_L-12_H-768](https://huggingface.co/uer/chinese_roberta_L-12_H-768). At the end of each epoch, the model is saved when the best performance on development set is achieved. ``` python3 finetune/run_classifier_siamese.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \ --vocab_path models/google_zh_vocab.txt \ --config_path models/sbert/base_config.json \ --train_path datasets/ChineseTextualInference/train.tsv \ --dev_path datasets/ChineseTextualInference/dev.tsv \ --learning_rate 5e-5 --epochs_num 5 --batch_size 64 ``` Finally, we convert the pre-trained model into Huggingface's format: ``` python3 scripts/convert_sbert_from_uer_to_huggingface.py --input_model_path models/finetuned_model.bin \ --output_model_path pytorch_model.bin \ --layers_num 12 ``` ### BibTeX entry and citation info ``` @article{reimers2019sentence, title={Sentence-bert: Sentence embeddings using siamese bert-networks}, author={Reimers, Nils and Gurevych, Iryna}, journal={arXiv preprint arXiv:1908.10084}, year={2019} } @article{zhao2019uer, title={UER: An Open-Source Toolkit for Pre-training Models}, author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong}, journal={EMNLP-IJCNLP 2019}, pages={241}, year={2019} } ```