Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ class BLIPNet(torch.nn.Module):
|
|
27 |
nn.Linear(self.ebd_dim, fc_dim),
|
28 |
nn.ReLU(),
|
29 |
)
|
30 |
-
self.
|
31 |
|
32 |
def forward(self, pixel_values, input_ids):
|
33 |
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
|
@@ -35,13 +35,13 @@ class BLIPNet(torch.nn.Module):
|
|
35 |
image_text_embeds = self.head(image_text_embeds.view(-1, self.ebd_dim))
|
36 |
|
37 |
# A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
|
38 |
-
logits = self.
|
39 |
|
40 |
# generated text, probabilities of classification
|
41 |
return outputs, logits
|
42 |
|
43 |
model = BLIPNet()
|
44 |
model.load_state_dict(torch.load("BLILP_Generation_Classification.bin"), strict=False)
|
45 |
-
|
46 |
You need to input the sample in the same way as shown in the example provided at: https://huggingface.co/uf-aice-lab/BLIP-Math
|
47 |
Then you can get the generated text and classification score simultaneously.
|
|
|
27 |
nn.Linear(self.ebd_dim, fc_dim),
|
28 |
nn.ReLU(),
|
29 |
)
|
30 |
+
self.output1= nn.Linear(fc_dim, 5) # 5 classes
|
31 |
|
32 |
def forward(self, pixel_values, input_ids):
|
33 |
outputs = self.model(input_ids=input_ids, pixel_values=pixel_values, labels=input_ids)
|
|
|
35 |
image_text_embeds = self.head(image_text_embeds.view(-1, self.ebd_dim))
|
36 |
|
37 |
# A classification model is based on embeddings from a generative model to leverage BLIP's powerful image-text encoding capabilities.
|
38 |
+
logits = self.output1(image_text_embeds)
|
39 |
|
40 |
# generated text, probabilities of classification
|
41 |
return outputs, logits
|
42 |
|
43 |
model = BLIPNet()
|
44 |
model.load_state_dict(torch.load("BLILP_Generation_Classification.bin"), strict=False)
|
45 |
+
```python
|
46 |
You need to input the sample in the same way as shown in the example provided at: https://huggingface.co/uf-aice-lab/BLIP-Math
|
47 |
Then you can get the generated text and classification score simultaneously.
|