--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: weeds_hfclass11 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9566666666666667 --- # weeds_hfclass11 Model is trained on balanced dataset/ 250 image per class/ .8 .1 .1 split/ 224x224 resized Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3603 - Accuracy: 0.9567 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.3089 | 0.99 | 37 | 2.0422 | 0.7133 | | 1.4465 | 1.99 | 74 | 1.2227 | 0.8767 | | 0.8455 | 2.99 | 111 | 0.8121 | 0.9067 | | 0.6579 | 3.99 | 148 | 0.6161 | 0.9267 | | 0.5163 | 4.99 | 185 | 0.5031 | 0.94 | | 0.4374 | 5.99 | 222 | 0.4078 | 0.9633 | | 0.3912 | 6.99 | 259 | 0.4134 | 0.9467 | | 0.358 | 7.99 | 296 | 0.4207 | 0.9233 | | 0.3509 | 8.99 | 333 | 0.3768 | 0.95 | | 0.3288 | 9.99 | 370 | 0.3603 | 0.9567 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.2