import streamlit as st import joblib import numpy as np # Load the model from Hugging Face Model Hub (replace with your model's Hugging Face repository URL) model = joblib.load('random_forest_model.pkl') # If model is uploaded directly in the Space, this works. # Streamlit App Title st.title("Power Prediction App") st.subheader("Enter the values for Current (I) and Resistance (R) to predict Power (P)") # Input fields for Current (I) and Resistance (R) current = st.number_input("Current (I in Amps)", min_value=0.1, max_value=10.0, value=5.0, step=0.1) resistance = st.number_input("Resistance (R in Ohms)", min_value=1.0, max_value=100.0, value=50.0, step=1.0) # Button to make prediction if st.button("Predict Power"): # Predict the power using the trained model prediction = model.predict([[current, resistance]]) # Display the result st.write(f"Predicted Power (P) for I = {current} A and R = {resistance} Ω is: {prediction[0]:.2f} Watts")