Update README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
# Model Card for Model ID
|
@@ -17,26 +21,21 @@ tags: []
|
|
17 |
|
18 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **
|
22 |
-
- **
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:**
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
@@ -69,131 +68,52 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
69 |
|
70 |
## How to Get Started with the Model
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
-
|
|
|
85 |
|
86 |
-
|
|
|
87 |
|
88 |
-
|
|
|
89 |
|
90 |
-
|
|
|
|
|
|
|
|
|
91 |
|
|
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region:**
|
151 |
-
- **Carbon Emitted:**
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- medical
|
5 |
+
license: bsd-3-clause
|
6 |
+
language:
|
7 |
+
- en
|
8 |
---
|
9 |
|
10 |
# Model Card for Model ID
|
|
|
21 |
|
22 |
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
23 |
|
24 |
+
- **Developed by:** Umar Igan
|
25 |
+
- **Model type:** VLM
|
26 |
+
- **Language(s) (NLP):** English
|
|
|
|
|
27 |
- **License:** [More Information Needed]
|
28 |
+
- **Finetuned from model [optional]:** Salesforce/blip-image-captioning-base
|
29 |
|
30 |
### Model Sources [optional]
|
31 |
|
32 |
<!-- Provide the basic links for the model. -->
|
33 |
|
34 |
- **Repository:** [More Information Needed]
|
|
|
|
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
+
This is a fine-tuned VLM on chest xray medicald dataset, the result shouldn't be used as an advice!!
|
|
|
39 |
### Direct Use
|
40 |
|
41 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
|
|
68 |
|
69 |
## How to Get Started with the Model
|
70 |
|
71 |
+
Example usage:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
```python
|
74 |
+
from transformers import BlipForConditionalGeneration, AutoProcessor
|
75 |
|
76 |
+
model = BlipForConditionalGeneration.from_pretrained("umarigan/blip-image-captioning-base-chestxray-finetuned").to(device)
|
77 |
+
processor = AutoProcessor.from_pretrained("umarigan/blip-image-captioning-base-chestxray-finetuned")
|
78 |
|
79 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
80 |
+
pixel_values = inputs.pixel_values
|
81 |
|
82 |
+
generated_ids = model.generate(pixel_values=pixel_values, max_length=50)
|
83 |
+
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
84 |
+
print(generated_caption)
|
85 |
+
```
|
86 |
+
### Training Data
|
87 |
|
88 |
+
https://huggingface.co/datasets/Shrey-1329/cxiu_hf_dataset
|
89 |
|
90 |
#### Training Hyperparameters
|
91 |
|
92 |
+
- lr: 5e-5
|
93 |
+
- Epoch: 10
|
94 |
+
- Dataset size: 1k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
#### Summary
|
96 |
+
A simple blip fine-tuned model on medical imaging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
## Environmental Impact
|
99 |
|
|
|
|
|
100 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
101 |
|
102 |
+
- **Hardware Type:** GPU
|
103 |
+
- **Hours used:** 1
|
104 |
+
- **Cloud Provider:** Google
|
105 |
+
- **Compute Region:** Frankfurt
|
106 |
+
- **Carbon Emitted:**
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
### Compute Infrastructure
|
109 |
|
110 |
+
Google Colab L4 GPU
|
111 |
|
112 |
#### Hardware
|
113 |
|
114 |
+
Google Colab L4 GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
## Model Card Contact
|
118 |
|
119 |
+
Umar Igan
|