File size: 2,657 Bytes
2271450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a47bfe
2271450
 
 
 
 
 
 
 
7a47bfe
2271450
7a47bfe
2271450
7a47bfe
 
 
 
 
 
 
 
2271450
7a47bfe
2271450
7a47bfe
 
2271450
 
 
 
 
 
7a47bfe
 
 
2271450
 
7a47bfe
2271450
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
datasets:
- unicamp-dl/mmarco
language:
- pt
pipeline_tag: text2text-generation
base_model: unicamp-dl/ptt5-v2-large
---

## Introduction
MonoPTT5 models are T5 rerankers for the Portuguese language. Starting from [ptt5-v2 checkpoints](https://huggingface.co/collections/unicamp-dl/ptt5-v2-666538a650188ba00aa8d2d0), they were trained for 100k steps on a mixture of Portuguese and English data from the mMARCO dataset.
For further information on the training and evaluation of these models, please refer to our paper, [ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language](https://arxiv.org/abs/2008.09144).

## Usage
The easiest way to use our models is through the `rerankers` package. After installing the package using `pip install rerankers[transformers]`, the following code can be used as a minimal working example:

```python
from rerankers import Reranker
import torch

query = "O futebol é uma paixão nacional"
docs = [
    "O futebol é superestimado e não deveria receber tanta atenção.",
    "O futebol é uma parte essencial da cultura brasileira e une as pessoas.",
]

ranker = Reranker(
    "unicamp-dl/monoptt5-large",
    inputs_template="Pergunta: {query} Documento: {text} Relevante:",
    dtype=torch.float32  # or bfloat16 if supported by your GPU
)

results = ranker.rank(query, docs)

print("Classification results:")
for result in results:
    print(result)

# Loading T5Ranker model unicamp-dl/monoptt5-large
# No device set
# Using device cuda
# Using dtype torch.float32
# Loading model unicamp-dl/monoptt5-large, this might take a while...
# Using device cuda.
# Using dtype torch.float32.
# T5 true token set to ▁Sim
# T5 false token set to ▁Não
# Returning normalised scores...
# Inputs template set to Pergunta: {query} Documento: {text} Relevante:

# Classification results:
# document=Document(text='O futebol é uma parte essencial da cultura brasileira e une as pessoas.', doc_id=1, metadata={}) score=0.923164963722229 rank=1
# document=Document(text='O futebol é superestimado e não deveria receber tanta atenção.', doc_id=0, metadata={}) score=0.08710747957229614 rank=2
```

For additional configurations and more advanced usage, consult the `rerankers` [GitHub repository](https://github.com/AnswerDotAI/rerankers).

# Citation
If you use our models, please cite:

    @article{ptt5_2020,
      title={PTT5: Pretraining and validating the T5 model on Brazilian Portuguese data},
      author={Carmo, Diedre and Piau, Marcos and Campiotti, Israel and Nogueira, Rodrigo and Lotufo, Roberto},
      journal={arXiv preprint arXiv:2008.09144},
      year={2020}
    }