File size: 1,762 Bytes
bf52f2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
base_model: xlm-roberta-large
tags:
- generated_from_trainer
datasets:
- uner_ser_set
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: uner_ser_set
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: uner_ser_set
      type: uner_ser_set
      config: default
      split: validation
      args: default
    metrics:
    - name: Precision
      type: precision
      value: 0.9338624338624338
    - name: Recall
      type: recall
      value: 0.9489247311827957
    - name: F1
      type: f1
      value: 0.9413333333333335
    - name: Accuracy
      type: accuracy
      value: 0.9930792962561494
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# uner_ser_set

This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the uner_ser_set dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0440
- Precision: 0.9339
- Recall: 0.9489
- F1: 0.9413
- Accuracy: 0.9931

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results



### Framework versions

- Transformers 4.31.0
- Pytorch 1.10.1+cu113
- Datasets 2.14.4
- Tokenizers 0.13.3