File size: 3,279 Bytes
00436b5
9d763e0
 
00436b5
9b4f241
9d763e0
 
 
 
 
 
 
00436b5
9d763e0
00436b5
9d763e0
54eca47
00436b5
9d763e0
00436b5
9d763e0
 
 
00436b5
9d763e0
00436b5
9d763e0
00436b5
9d763e0
 
 
 
 
 
 
 
 
00436b5
9d763e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
---
language:
- en
library_name: transformers
license: apache-2.0
tags:
- unsloth
- transformers
- mistral
- mistral-7b
- bnb
---

# Finetune Mistral, Gemma, Llama 2-5x faster with 70% less memory via Unsloth!

Directly quantized 4bit model with `bitsandbytes`.
Original source: https://huggingface.co/alpindale/Mistral-7B-v0.2-hf/tree/main used to create the 4bit quantized versions.

We have a Google Colab Tesla T4 notebook for Mistral 7b v2 (32K context length) here: https://colab.research.google.com/drive/1Fa8QVleamfNELceNM9n7SeAGr_hT5XIn?usp=sharing

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/u54VK8m8tk)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/buy%20me%20a%20coffee%20button.png" width="200"/>](https://ko-fi.com/unsloth)
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

## ✨ Finetune for Free

All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.

| Unsloth supports          |    Free Notebooks                                                                                           | Performance | Memory use |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
| **Gemma 7b**      | [▶️ Start on Colab](https://colab.research.google.com/drive/10NbwlsRChbma1v55m8LAPYG15uQv6HLo?usp=sharing)               | 2.4x faster | 58% less |
| **Mistral 7b**    | [▶️ Start on Colab](https://colab.research.google.com/drive/1Dyauq4kTZoLewQ1cApceUQVNcnnNTzg_?usp=sharing)               | 2.2x faster | 62% less |
| **Llama-2 7b**      | [▶️ Start on Colab](https://colab.research.google.com/drive/1lBzz5KeZJKXjvivbYvmGarix9Ao6Wxe5?usp=sharing)               | 2.2x faster | 43% less |
| **TinyLlama**  | [▶️ Start on Colab](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing)              | 3.9x faster | 74% less |
| **CodeLlama 34b** A100   | [▶️ Start on Colab](https://colab.research.google.com/drive/1y7A0AxE3y8gdj4AVkl2aZX47Xu3P1wJT?usp=sharing)              | 1.9x faster | 27% less |
| **Mistral 7b** 1xT4  | [▶️ Start on Kaggle](https://www.kaggle.com/code/danielhanchen/kaggle-mistral-7b-unsloth-notebook) | 5x faster\* | 62% less |
| **DPO - Zephyr**     | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing)               | 1.9x faster | 19% less |

- This [conversational notebook](https://colab.research.google.com/drive/1Aau3lgPzeZKQ-98h69CCu1UJcvIBLmy2?usp=sharing) is useful for ShareGPT ChatML / Vicuna templates.
- This [text completion notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.