--- license: apache-2.0 language: - en ---

UForm

Pocket-Sized Multimodal AI
For Content Understanding and Generation

## Description UForm-Gen is a small generative vision-language model primarily designed for Image Captioning and Visual Question Answering. The model consists of two parts: 1. [UForm Vision Encoder](https://huggingface.co/unum-cloud/uform-vl-english) 2. [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B) manually tuned on the instructions dataset The model was pre-trained on: MSCOCO, SBU Captions, Visual Genome, VQAv2, GQA and a few internal datasets. UForm-Gen-Chat is SFT version of [`UForm-Gen`](https://huggingface.co/unum-cloud/uform-gen) for multimodal chat. ### Usage ```bash pip install uform ``` For the CLI demo run the following: ```bash uform-chat --model unum-cloud/uform-gen-chat --image_path=zebra.jpg uform-chat --model unum-cloud/uform-gen-chat --image_path=zebra.jpg --device="cuda:0" --fp16 ``` Or if you want to use the model in your code: ```python from uform.gen_model import VLMForCausalLM, VLMProcessor model = VLMForCausalLM.from_pretrained("unum-cloud/uform-gen-chat") processor = VLMProcessor.from_pretrained("unum-cloud/uform-gen-chat") messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": " {Your message}"} ] image = processor.image_processor(Image.open("zebra.jpg")).unsqueeze(0) input_ids = processor.tokenizer.apply_chat_template( messages, return_tensors="pt", add_generation_prompt=True ) attention_mask = torch.ones(1, input_ids.shape[1] + processor.num_image_latents - 1) inputs = { "input_ids": input_ids, "attention_mask": attention_mask, "images": image, } outputs = model.generate( **inputs, do_sample=False, use_cache=True, max_new_tokens=1024, eos_token_id=32001, pad_token_id=processor.tokenizer.pad_token_id, ) message = processor.batch_decode(outputs[:, inputs["input_ids"].shape[1]:-1]) ``` ## Evaluation For captioning evaluation we measure CLIPScore and RefCLIPScore¹. | Model | Size | Caption Length | CLIPScore | RefCLIPScore | | :---------------------------------- | ---: | -------------: | --------: | -----------: | | `llava-hf/llava-1.5-7b-hf` | 7B | Long | 0.878 | 0.529 | | `llava-hf/llava-1.5-7b-hf` | 7B | Short | 0.886 | 0.531 | | | | `Salesforce/instructblip-vicuna-7b` | 7B | Long | 0.902 | 0.534 | | `Salesforce/instructblip-vicuna-7b` | 7B | Short | 0.848 | 0.523 | | | | | `unum-cloud/uform-gen-chat` | 1.5B | Long | 0.860 | 0.525 | | `unum-cloud/uform-gen-chat` | 1.5B | Short | 0.858 | 0.525 | ¹ We used `apple/DFN5B-CLIP-ViT-H-14-378` CLIP model.