File size: 5,896 Bytes
ab80423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from functools import partial

import torch
import torch.nn.functional as F
from transformers.processing_utils import ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
from transformers import AutoTokenizer, AutoConfig
from transformers import BatchFeature

from PIL import Image
from torchvision.transforms import (
    Compose,
    Normalize,
    Resize,
    ToTensor
)


IMAGENET_MEAN = (0.48145466, 0.4578275, 0.40821073)
IMAGENET_STD = (0.26862954, 0.26130258, 0.27577711)


def convert_to_rgb(x):
    return x.convert("RGB")


def expand2square(image, background_color):
    width, height = image.size
    if width == height:
        return image
    elif width > height:
        result = Image.new(image.mode, (width, width), background_color)
        result.paste(image, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(image.mode, (height, height), background_color)
        result.paste(image, ((height - width) // 2, 0))
        return result


class ImageProcessor(BaseImageProcessor):
    def __init__(
        self,
        image_size: int,
        **kwargs
    ):
        super().__init__(**kwargs)
        self.transform = Compose(
            [
                convert_to_rgb,
                partial(
                    expand2square,
                    background_color=tuple(int(255 * v) for v in IMAGENET_MEAN)
                ),
                Resize(image_size),
                ToTensor(),
                Normalize(
                    mean=IMAGENET_MEAN,
                    std=IMAGENET_STD,
                ),
            ]
        )
    
    def preprocess(
        self,
        image: Image
    ):
        return self.transform(image)

    def __repr__(self):
        return repr(self.transform)


class VLMProcessor(ProcessorMixin):
    def __init__(self, config):
        self.config = config
        self.image_size = config.image_size
        
        self.feature_extractor = ImageProcessor(self.image_size)
        self.tokenizer = AutoTokenizer.from_pretrained(
            config.text_decoder_name_or_path, additional_special_tokens=["<image>"]
        )
        self.tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}"
        self.num_image_latents = config.num_image_latents
        # super().__init__(self.image_processor, self.tokenizer)

    def __call__(
        self, text=None, images=None, **kwargs
    ):
        if text is not None:
            if isinstance(text, str):
                text = [text]

            tokenized_texts = []
            for t in text:
                messages = [
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": f" <image> {t}"},
                ]
                tokenized_prompt = self.tokenizer.apply_chat_template(
                    messages, add_generation_prompt=True, return_tensors="pt"
                )

                tokenized_texts.append(tokenized_prompt)

            max_len = max(len(t[0]) for t in tokenized_texts)
            input_ids = torch.full(
                (len(tokenized_texts), max_len),
                fill_value=self.tokenizer.pad_token_id,
                dtype=torch.int64,
            )
            attention_mask = torch.full(
                (len(tokenized_texts), max_len), fill_value=0, dtype=torch.int64
            )

            for i, tokens in enumerate(tokenized_texts):
                input_ids[i, -len(tokens[0]) :] = tokens[0]
                attention_mask[i, -len(tokens[0]) :] = 1

            attention_mask = F.pad(
                attention_mask, pad=(0, self.num_image_latents - 1), value=1
            )

            encoding = BatchFeature(
                data={"input_ids": input_ids, "attention_mask": attention_mask}
            )

        if images is not None:
            if isinstance(images, (list, tuple)):
                image_features = torch.empty(
                    (len(images), 3, self.image_size , self.image_size),
                    dtype=torch.float32,
                )

                for i, image in enumerate(images):
                    image_features[i] = self.feature_extractor(image)

            else:
                image_features = self.image_processor(images).unsqueeze(0)

        if text is not None and images is not None:
            encoding["images"] = image_features
            return encoding

        elif text is not None:
            return encoding

        else:
            return BatchFeature(
                data={
                    "images": image_features,
                },
                tensor_type=return_tensors,
            )

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path,
        trust_remote_code=False,
        **kwargs
    ):
        config = AutoConfig.from_pretrained(
            pretrained_model_name_or_path,
            trust_remote_code=trust_remote_code
        )
        return cls(config)