File size: 5,274 Bytes
80e48d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch import Tensor
from typing import Optional

class Attention(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int,
        dropout_prob: float = 0
    ):
        super().__init__()
        
        self.use_sdp = int(torch.__version__[0]) > 1

        self.query = nn.Linear(dim, dim)
        self.key = nn.Linear(dim, dim)
        self.value = nn.Linear(dim, dim)
        self.out = nn.Linear(dim, dim)

        self.dropout_prob = dropout_prob
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.scale = self.head_dim**-0.5

    def forward(
        self,
        x: Tensor,
        attn_mask: Optional[Tensor] = None,
        context: Optional[Tensor] = None,
        is_causal: bool = False,
    ) -> Tensor:

        query = self.reshape(self.query(x))
        key = self.reshape(self.key(x if context is None else context))
        value = self.reshape(self.value(x if context is None else context))

        if self.use_sdp:
            x = F.scaled_dot_product_attention(
                query,
                key,
                value,
                attn_mask,
                dropout_p=self.dropout_prob if self.training else 0,
                is_causal=is_causal,
            )
        else:
            attn = query @ key.transpose(-2, -1) * self.scale
            if attn_mask is not None:
                attn += attn_mask

            attn = attn.softmax(dim=-1)
            x = attn @ value

        return self.out(x.transpose(2, 1).flatten(2))

    def reshape(self, x: Tensor) -> Tensor:
        batch_size, seq_len, _ = x.shape
        x = x.view(batch_size, seq_len, self.num_heads, self.head_dim)
        return x.transpose(2, 1)


class MLP(nn.Module):
   
    def __init__(
        self,
        dim: int,
        dim_expand_factor: int = 4
    ):
        super().__init__()

        self.hidden_layer = nn.Linear(dim, dim * dim_expand_factor)
        self.output_layer = nn.Linear(dim * dim_expand_factor, dim)

    def forward(self, x: Tensor) -> Tensor:
        x = F.gelu(self.hidden_layer(x))
        return self.output_layer(x)


class LayerScale(nn.Module):

    def __init__(
        self,
        dim: int,
        init_values: float = 1e-5,
        inplace: bool = False
    ):
        super().__init__()
        self.weight = nn.Parameter(init_values * torch.ones(dim))
        self.inplace = inplace

    def forward(self, x: Tensor) -> Tensor:
        return x.mul_(self.weight) if self.inplace else x * self.weight


class VisionEncoderBlock(nn.Module):

    def __init__(
        self,
        dim: int,
        num_heads: int
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.attn = Attention(dim, num_heads)
        self.ls1 = LayerScale(dim)

        self.norm2 = nn.LayerNorm(dim, eps=1e-6)
        self.mlp = MLP(dim)
        self.ls2 = LayerScale(dim)

    def forward(self, x: Tensor) -> Tensor:
        x = x + self.ls1(self.attn(self.norm1(x)))
        x = x + self.ls2(self.mlp(self.norm2(x)))
        return x


class VisionEncoder(nn.Module):
    
    def __init__(
        self,
        dim: int,
        patch_size: int,
        num_layers: int,
        num_heads: int,
    ):
        super().__init__()

        self.n_patch = 224 // patch_size
        self.seq_len = self.n_patch ** 2
        self.patch_size = patch_size

        self.patch_embed = nn.Conv2d(3, dim, patch_size, patch_size)
        self.pos_embed = nn.Parameter(torch.randn(1, self.seq_len, dim) * 0.02)
        self.cls_token = nn.Parameter(torch.zeros(1, 1, dim))
        self.interpolate_offset = 0.1
        self.interpolate_antialias = False

        self.blocks = nn.Sequential(
            *[
                VisionEncoderBlock(dim, num_heads)
                for _ in range(num_layers)
            ]
        )

        self.norm = nn.LayerNorm(dim, eps=1e-6)

    def interpolate_pos_encoding(self, x, h, w):
        previous_dtype = x.dtype

        if x.shape[1] == self.seq_len and w == h:
            return self.pos_embed
        
        pos_embed = self.pos_embed.float()

        dim = x.shape[-1]
        w0 = w // self.patch_size
        h0 = h // self.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
        sx, sy = float(w0) / self.n_patch, float(h0) / self.n_patch

        pos_embed = nn.functional.interpolate(
            pos_embed.reshape(1, self.n_patch, self.n_patch, dim).permute(0, 3, 1, 2),
            scale_factor=(sy, sx),
            mode="bicubic",
            antialias=self.interpolate_antialias,
        )

        return pos_embed.to(previous_dtype).flatten(start_dim=2).transpose(2, 1)

    def forward(self, x: Tensor) -> Tensor:
        h, w = x.shape[2:]
        x = self.patch_embed(x).flatten(start_dim=2).transpose(2, 1)
        x = x + self.interpolate_pos_encoding(x, h, w)
        x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
        x = self.blocks(x)
        return self.norm(x)