File size: 6,504 Bytes
02686f7
0649b01
 
8160143
 
 
 
 
 
 
 
 
 
02686f7
0649b01
 
8160143
 
 
0649b01
 
8160143
0649b01
8160143
0649b01
 
8160143
0649b01
 
 
8160143
 
 
 
 
 
 
 
0649b01
 
8160143
0649b01
 
 
8160143
 
6623e1e
8160143
0649b01
6623e1e
8160143
0649b01
6623e1e
8160143
 
0649b01
8160143
 
6623e1e
8160143
0649b01
6623e1e
8160143
 
0649b01
8160143
0649b01
8160143
0649b01
8160143
0649b01
 
 
 
8160143
0649b01
 
 
8160143
0649b01
8160143
0649b01
8160143
 
0649b01
8160143
0649b01
 
 
 
8160143
0649b01
 
 
 
 
 
 
 
8160143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0649b01
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8160143
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
license: apache-2.0
datasets:
- upaya07/NeurIPS-LLM-data
language:
- en
tags:
- NeurIPS
- NeurIPS LLM Efficiency Challenge
- NeurIPS LLM Efficiency Challenge Winner Model
- Team Upaya
---

# Model Card for Model ID
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
[![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)


- πŸš€πŸš€πŸš€ Our model **Birbal-7B-V1** achieved πŸ† first rank πŸ† in among 80+ global teams in [**NeurIPS Large Language Model Efficiency Challenge: 1 LLM + 1GPU + 1Day**](https://llm-efficiency-challenge.github.io/) organized by Microsoft and Meta.

- πŸ“£ **P.S.:** Please reach out to us, if you would be interested in supporting compute resources. Here are our recent achievements in LLM space: https://upaya.ai/

## Model Details
**Birbal-7B-V1** is fine-tuned on our curated dataset of 200k size for nearly 3 epochs. Our approach for dataset preparation is focused on finding most-relavant examples from large pool of tasks spanning across NLP, Maths, Commonsense, etc. Hence, we expect model to perform well on different tasks including unseen tasks.

### Model Description

- **Project GitHub Page:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
- **Developed by:** ❀️ Team **Upaya** - [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Pawan Rajpoot](https://www.linkedin.com/in/pawanrajpoot/) 
- **Funded by:** self-work
- **Model type:** fine-tuned. It is a PEFT model and can be combined with [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model.
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** mistralai/Mistral-7B-v0.1
 
### Model Sources [optional]

- **Repository:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge

## Uses

Birbal-7B-V1 is trained with the following format:
```
## Instruction:
<instruction>

## Input:
<input>

## Response:
<response>
```

If a record does not contain any instruction, here is the training format:
```
## Input:
<input>

## Response:
<response>
```

It will performed best if queried in the same way.

### Downstream Use

Birbal-7B-V1 is fine-tuned on our curated dataset that contain examples from large number of tasks spanning across NLP, Maths, QA, etc. Hence, we expect the model to perform well on in general on various kinds of tasks.


## How to Get Started with the Model

It is quite easy! Merge Birbal-7B-V1 peft model with Mistral-7B model and start running inference!

## Training Details

We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and fine-tuned it on a single RTX 4090 GPU for 24 hours as per the competition rules. Fine-tuning was performed using 4-bit QLoRA.

### Training Data

Here is high-level diagram of our data preparation strategy:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/ot0yJdO6VpKvPYKd-XEuy.png)

Please visit https://huggingface.co/datasets/upaya07/NeurIPS-LLM-data for more details.


#### Training Hyperparameters

Refer to https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge/blob/main/training/axolotl/examples/mistral/nips/nips_02.yml for example set of hyperparams used.


## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Results

| Task | Score |
| ----- |------|
| MMLU - EM | 0.629 |
| MMLU - EM (Robustness) | 0.591 |
| MMLU - EM (Fairness) | 0.596 |
| MMLU Mean Win Rate | 0.417 |
| TruthfulQA - EM | 0.59 |
| TruthfulQA - EM (Robustness) | 0.541 |
| TruthfulQA - EM (Fairness) | 0.492 |
| TruthfulQA Mean Win Rate | 0.75 |
| BIG-bench - EM | 0.330 |
| BIG-bench Mean Win Rate | 0.75 |
| GSM8K - EM | 0.443 |
| GSM8K Mean Win Rate | 0.625 |
| BBQ - EM | 0.738 |
| BBQ Mean Win Rate | 0.25 |
| sam_sum - ROUGE-2 | 0.127 |
| sam_sum - Stereotypes (race) | 0.667 |
| sam_sum - Stereotypes (gender) | 0.447 |
| sam_sum - Representation (race) | 0.458 |
| sam_sum - Representation (gender) | 0.013 |
| sam_sum Mean Win Rate | 0.383 |
| corr2cause - EM | 0.615 |
| corr2cause Mean Win Rate | 0.875 |
| MATH (chain-of-thoughts) - Equivalent (chain of thought) | 0.121 |
| MATH Mean Win Rate | 0.75 |
| ethics_justice - EM | 0.68 |
| ethics_justice - EM (Robustness) | 0.645 |
| ethics_justice - EM (Fairness) | 0.62 |
| ethics_commonsense - EM | 0.41 |
| ethics_commonsense - EM (Robustness) | 0.33 |
| ethics_commonsense - EM (Fairness) | 0.345 |
| ethics_virtue - EM | 0.895 |
| ethics_virtue - EM (Robustness) | 0.865 |
| ethics_virtue - EM (Fairness) | 0.86 |
| ethics_deontology - EM | 0.63 |
| ethics_deontology - EM (Robustness) | 0.585 |
| ethics_deontology - EM (Fairness) | 0.595 |
| ethics_utilitarianism - EM | 0.72 |
| ethics_utilitarianism - EM (Robustness) | 0.6 |
| ethics_utilitarianism - EM (Fairness) | 0.645 |
| ethics Mean Win Rate | 0.55 |
| πŸ”₯ **Score_full** | **0.579** |
| πŸ”₯ **Score_open** | **0.516** |
| πŸ”₯ **Score_hidden** | **0.61** |

#### Top-5 Teams
| Position | Score |
| ----- |------|
| 5th rank | 0.362 |
| 4th rank | 0.371 |
| 3rd rank | 0.381 |
| 2nd rank | 0.424 |
| πŸ”₯ **Ours (1st)** | **0.579** |


## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]


## Training procedure


The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16

### Framework versions


- PEFT 0.6.1