File size: 6,494 Bytes
02686f7 0649b01 8160143 02686f7 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 0649b01 8160143 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
---
library_name: peft
base_model: mistralai/Mistral-7B-v0.1
license: apache-2.0
datasets:
- upaya07/NeurIPS-LLM-data
language:
- en
tags:
- NeurIPS
- NeurIPS LLM Efficiency Challenge
- NeurIPS LLM Efficiency Challenge Winner Model
- Team Upaya
---
# Model Card for Model ID
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](CODE_LICENSE)
[![Model Weight License](https://img.shields.io/badge/Model%20Weights%20License-Apache_2.0-green.svg)](LICENSE)
[![Python 3.9+](https://img.shields.io/badge/python-3.9+-blue.svg)](https://www.python.org/downloads/release/python-390/)
- πππ Our model **Birbal-7B-V1** achieved π first rank π in among 80+ global teams in [**NeurIPS Large Language Model Efficiency Challenge: 1 LLM + 1GPU + 1Day**](https://llm-efficiency-challenge.github.io/) organized by Microsoft and Meta.
- π£ **P.S.:** Please reach out to us, if you would be interested in supporting compute resources. Here are our recent achievements in LLM space: https://upaya.ai/
## Model Details
**Birbal-7B-V1** is fine-tuned on our curated dataset of 200k size for nearly 3 epochs. Our approach for dataset preparation is focused on finding most-relavant examples from large pool of tasks spanning across NLP, Maths, Commonsense, etc. Hence, we expect model to perform well on different tasks including unseen tasks.
### Model Description
- **Project GitHub Page:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
- **Developed by:** β€οΈ Team **Upaya** - [Ashvini Kumar Jindal](https://www.linkedin.com/in/ashvini-jindal-26653262/), [Ankur Parikh](https://www.linkedin.com/in/ankurnlpexpert/), [Pawan Rajpoot](https://www.linkedin.com/in/pawanrajpoot/)
- **Funded by:** self-work
- **Model type:** fine-tuned. It is a PEFT model and can be combined with [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) model.
- **Language(s) (NLP):** English
- **License:** Apache-2.0
- **Finetuned from model:** mistralai/Mistral-7B-v0.1
### Model Sources [optional]
- **Repository:** https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge
## Uses
Birbal-7B-V1 is trained with the following format:
```
##Instruction
<instruction>
##Input
<input>
##Response
<response>
```
If a record does not contain any instruction, here is the training format:
```
##Input
<input>
##Response
<response>
```
It will performed best if queried in the same way.
### Downstream Use
Birbal-7B-V1 is fine-tuned on our curated dataset that contain examples from large number of tasks spanning across NLP, Maths, QA, etc. Hence, we expect the model to perform well on in general on various kinds of tasks.
## How to Get Started with the Model
It is quite easy! Merge Birbal-7B-V1 peft model with Mistral-7B model and start running inference!
## Training Details
We used [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) as a base model and fine-tuned it on a single RTX 4090 GPU for 24 hours as per the competition rules. Fine-tuning was performed using 4-bit QLoRA.
### Training Data
Here is high-level diagram of our data preparation strategy:
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64c75c1237333ccfef30a602/ot0yJdO6VpKvPYKd-XEuy.png)
Please visit https://huggingface.co/datasets/upaya07/NeurIPS-LLM-data for more details.
#### Training Hyperparameters
Refer to https://github.com/Upaya07/NeurIPS-llm-efficiency-challenge/blob/main/training/axolotl/examples/mistral/nips/nips_02.yml for example set of hyperparams used.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Results
| Task | Score |
| ----- |------|
| MMLU - EM | 0.629 |
| MMLU - EM (Robustness) | 0.591 |
| MMLU - EM (Fairness) | 0.596 |
| MMLU Mean Win Rate | 0.417 |
| TruthfulQA - EM | 0.59 |
| TruthfulQA - EM (Robustness) | 0.541 |
| TruthfulQA - EM (Fairness) | 0.492 |
| TruthfulQA Mean Win Rate | 0.75 |
| BIG-bench - EM | 0.330 |
| BIG-bench Mean Win Rate | 0.75 |
| GSM8K - EM | 0.443 |
| GSM8K Mean Win Rate | 0.625 |
| BBQ - EM | 0.738 |
| BBQ Mean Win Rate | 0.25 |
| sam_sum - ROUGE-2 | 0.127 |
| sam_sum - Stereotypes (race) | 0.667 |
| sam_sum - Stereotypes (gender) | 0.447 |
| sam_sum - Representation (race) | 0.458 |
| sam_sum - Representation (gender) | 0.013 |
| sam_sum Mean Win Rate | 0.383 |
| corr2cause - EM | 0.615 |
| corr2cause Mean Win Rate | 0.875 |
| MATH (chain-of-thoughts) - Equivalent (chain of thought) | 0.121 |
| MATH Mean Win Rate | 0.75 |
| ethics_justice - EM | 0.68 |
| ethics_justice - EM (Robustness) | 0.645 |
| ethics_justice - EM (Fairness) | 0.62 |
| ethics_commonsense - EM | 0.41 |
| ethics_commonsense - EM (Robustness) | 0.33 |
| ethics_commonsense - EM (Fairness) | 0.345 |
| ethics_virtue - EM | 0.895 |
| ethics_virtue - EM (Robustness) | 0.865 |
| ethics_virtue - EM (Fairness) | 0.86 |
| ethics_deontology - EM | 0.63 |
| ethics_deontology - EM (Robustness) | 0.585 |
| ethics_deontology - EM (Fairness) | 0.595 |
| ethics_utilitarianism - EM | 0.72 |
| ethics_utilitarianism - EM (Robustness) | 0.6 |
| ethics_utilitarianism - EM (Fairness) | 0.645 |
| ethics Mean Win Rate | 0.55 |
| π₯ **Score_full** | **0.579** |
| π₯ **Score_open** | **0.516** |
| π₯ **Score_hidden** | **0.61** |
#### Top-5 Teams
| Position | Score |
| ----- |------|
| 5th rank | 0.362 |
| 4th rank | 0.371 |
| 3rd rank | 0.381 |
| 2nd rank | 0.424 |
| π₯ **Ours (1st)** | **0.579** |
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.6.1 |