Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +341 -3
- config.json +50 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,341 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- korean
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
- multilingual
|
7 |
+
- sentence-transformers
|
8 |
+
- sentence-similarity
|
9 |
+
- feature-extraction
|
10 |
+
license: apache-2.0
|
11 |
+
language:
|
12 |
+
- af
|
13 |
+
- ar
|
14 |
+
- az
|
15 |
+
- be
|
16 |
+
- bg
|
17 |
+
- bn
|
18 |
+
- ca
|
19 |
+
- ceb
|
20 |
+
- cs
|
21 |
+
- cy
|
22 |
+
- da
|
23 |
+
- de
|
24 |
+
- el
|
25 |
+
- en
|
26 |
+
- es
|
27 |
+
- et
|
28 |
+
- eu
|
29 |
+
- fa
|
30 |
+
- fi
|
31 |
+
- fr
|
32 |
+
- gl
|
33 |
+
- gu
|
34 |
+
- he
|
35 |
+
- hi
|
36 |
+
- hr
|
37 |
+
- ht
|
38 |
+
- hu
|
39 |
+
- hy
|
40 |
+
- id
|
41 |
+
- is
|
42 |
+
- it
|
43 |
+
- ja
|
44 |
+
- jv
|
45 |
+
- ka
|
46 |
+
- kk
|
47 |
+
- km
|
48 |
+
- kn
|
49 |
+
- ko
|
50 |
+
- ky
|
51 |
+
- lo
|
52 |
+
- lt
|
53 |
+
- lv
|
54 |
+
- mk
|
55 |
+
- ml
|
56 |
+
- mn
|
57 |
+
- mr
|
58 |
+
- ms
|
59 |
+
- my
|
60 |
+
- ne
|
61 |
+
- nl
|
62 |
+
- 'no'
|
63 |
+
- pa
|
64 |
+
- pl
|
65 |
+
- pt
|
66 |
+
- qu
|
67 |
+
- ro
|
68 |
+
- ru
|
69 |
+
- si
|
70 |
+
- sk
|
71 |
+
- sl
|
72 |
+
- so
|
73 |
+
- sq
|
74 |
+
- sr
|
75 |
+
- sv
|
76 |
+
- sw
|
77 |
+
- ta
|
78 |
+
- te
|
79 |
+
- th
|
80 |
+
- tl
|
81 |
+
- tr
|
82 |
+
- uk
|
83 |
+
- ur
|
84 |
+
- vi
|
85 |
+
- yo
|
86 |
+
- zh
|
87 |
+
library_name: sentence-transformers
|
88 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
89 |
+
datasets: []
|
90 |
+
metrics:
|
91 |
+
- pearson_cosine
|
92 |
+
- spearman_cosine
|
93 |
+
- pearson_manhattan
|
94 |
+
- spearman_manhattan
|
95 |
+
- pearson_euclidean
|
96 |
+
- spearman_euclidean
|
97 |
+
- pearson_dot
|
98 |
+
- spearman_dot
|
99 |
+
- pearson_max
|
100 |
+
- spearman_max
|
101 |
+
widget:
|
102 |
+
- source_sentence: 이집트 군대가 형제애를 단속하다
|
103 |
+
sentences:
|
104 |
+
- 이집트의 군대가 무슬림 형제애를 단속하다
|
105 |
+
- 아르헨티나의 기예르모 코리아와 네덜란드의 마틴 버커크의 또 다른 준결승전도 매력적이다.
|
106 |
+
- 그것이 사실일 수도 있다고 생각하는 것은 재미있다.
|
107 |
+
- source_sentence: 오, 그리고 다시 결혼은 근본적인 인권이라고 주장한다.
|
108 |
+
sentences:
|
109 |
+
- 특히 결혼은 근본적인 인권이라고 말한 후에.
|
110 |
+
- 해변에 있는 흑인과 그의 개...
|
111 |
+
- 이란은 핵 프로그램이 평화적인 목적을 위한 것이라고 주장한다
|
112 |
+
- source_sentence: 두 남자가 난간에 상자를 올려놓고 있다.
|
113 |
+
sentences:
|
114 |
+
- 심장 박동이 빨라졌다.
|
115 |
+
- 두 남자가 집에 있고, 깊이 잠들어 있다.
|
116 |
+
- 두 남자가 난간에 상자를 놓고 있다.
|
117 |
+
- source_sentence: 조지 샤힌은 안데르센 컨설팅 사업부에서 일했다.
|
118 |
+
sentences:
|
119 |
+
- 안데르센 컨설팅은 여전히 번창하는 사업이다.
|
120 |
+
- 공개 전시 중에 총이 경례한다.
|
121 |
+
- 이것은 내가 영국의 아서 안데르센 사업부의 파트너인 짐 와디아를 아서 안데르센 경영진이 선택한 것보다 래리 웨인바흐를 안데르센 월드와이드의
|
122 |
+
경영 파트너로 승계하기 위해 안데르센 컨설팅 사업부(현재의 엑센츄어라고 알려져 있음)의 전 관리 파트너인 조지 샤힌에 대한 지지를 표명했을
|
123 |
+
때 가장 명백했다.
|
124 |
+
- source_sentence: 아이를 가진 엄마가 해변을 걷는다.
|
125 |
+
sentences:
|
126 |
+
- 국립공원에서 가장 큰 마을인 케스윅의 인구는 매년 여름 등산객, 뱃사람, 관광객이 도착함에 따라 증가한다.
|
127 |
+
- 한 남자가 해변에서 개를 산책시킨다.
|
128 |
+
- 두 사람이 해변을 걷는다.
|
129 |
+
pipeline_tag: sentence-similarity
|
130 |
+
model-index:
|
131 |
+
- name: upskyy/gte-korean-base
|
132 |
+
results:
|
133 |
+
- task:
|
134 |
+
type: semantic-similarity
|
135 |
+
name: Semantic Similarity
|
136 |
+
dataset:
|
137 |
+
name: sts dev
|
138 |
+
type: sts-dev
|
139 |
+
metrics:
|
140 |
+
- type: pearson_cosine
|
141 |
+
value: 0.8681402442523579
|
142 |
+
name: Pearson Cosine
|
143 |
+
- type: spearman_cosine
|
144 |
+
value: 0.8689161244129222
|
145 |
+
name: Spearman Cosine
|
146 |
+
- type: pearson_manhattan
|
147 |
+
value: 0.7793706671294577
|
148 |
+
name: Pearson Manhattan
|
149 |
+
- type: spearman_manhattan
|
150 |
+
value: 0.7816816816264681
|
151 |
+
name: Spearman Manhattan
|
152 |
+
- type: pearson_euclidean
|
153 |
+
value: 0.7810210343196274
|
154 |
+
name: Pearson Euclidean
|
155 |
+
- type: spearman_euclidean
|
156 |
+
value: 0.7835693502057339
|
157 |
+
name: Spearman Euclidean
|
158 |
+
- type: pearson_dot
|
159 |
+
value: 0.71802928588865
|
160 |
+
name: Pearson Dot
|
161 |
+
- type: spearman_dot
|
162 |
+
value: 0.7552957785734216
|
163 |
+
name: Spearman Dot
|
164 |
+
- type: pearson_max
|
165 |
+
value: 0.8681402442523579
|
166 |
+
name: Pearson Max
|
167 |
+
- type: spearman_max
|
168 |
+
value: 0.8689161244129222
|
169 |
+
name: Spearman Max
|
170 |
+
---
|
171 |
+
|
172 |
+
# SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
|
173 |
+
|
174 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
175 |
+
|
176 |
+
## Model Details
|
177 |
+
|
178 |
+
### Model Description
|
179 |
+
- **Model Type:** Sentence Transformer
|
180 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 2098722cb5e9d7f96f46df0496f4d34b7338f79c -->
|
181 |
+
- **Maximum Sequence Length:** **8192 tokens**
|
182 |
+
- **Output Dimensionality:** 768 tokens
|
183 |
+
- **Similarity Function:** Cosine Similarity
|
184 |
+
<!-- - **Training Dataset:** Unknown -->
|
185 |
+
<!-- - **Language:** Unknown -->
|
186 |
+
<!-- - **License:** Unknown -->
|
187 |
+
|
188 |
+
### Full Model Architecture
|
189 |
+
|
190 |
+
```
|
191 |
+
SentenceTransformer(
|
192 |
+
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model
|
193 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
194 |
+
)
|
195 |
+
```
|
196 |
+
|
197 |
+
## Usage
|
198 |
+
|
199 |
+
### Direct Usage (Sentence Transformers)
|
200 |
+
|
201 |
+
First install the Sentence Transformers library:
|
202 |
+
|
203 |
+
```bash
|
204 |
+
pip install -U sentence-transformers
|
205 |
+
```
|
206 |
+
|
207 |
+
Then you can load this model and run inference.
|
208 |
+
```python
|
209 |
+
from sentence_transformers import SentenceTransformer
|
210 |
+
|
211 |
+
# Download from the 🤗 Hub
|
212 |
+
model = SentenceTransformer("upskyy/gte-korean-base")
|
213 |
+
|
214 |
+
# Run inference
|
215 |
+
sentences = [
|
216 |
+
'아이를 가진 엄마가 해변을 걷는다.',
|
217 |
+
'두 사람이 해변을 걷는다.',
|
218 |
+
'한 남자가 해변에서 개를 산책시킨다.',
|
219 |
+
]
|
220 |
+
embeddings = model.encode(sentences)
|
221 |
+
print(embeddings.shape)
|
222 |
+
# [3, 768]
|
223 |
+
|
224 |
+
# Get the similarity scores for the embeddings
|
225 |
+
similarities = model.similarity(embeddings, embeddings)
|
226 |
+
print(similarities.shape)
|
227 |
+
# [3, 3]
|
228 |
+
```
|
229 |
+
|
230 |
+
<!--
|
231 |
+
### Direct Usage (Transformers)
|
232 |
+
|
233 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
234 |
+
|
235 |
+
</details>
|
236 |
+
-->
|
237 |
+
|
238 |
+
<!--
|
239 |
+
### Downstream Usage (Sentence Transformers)
|
240 |
+
|
241 |
+
You can finetune this model on your own dataset.
|
242 |
+
|
243 |
+
<details><summary>Click to expand</summary>
|
244 |
+
|
245 |
+
</details>
|
246 |
+
-->
|
247 |
+
|
248 |
+
<!--
|
249 |
+
### Out-of-Scope Use
|
250 |
+
|
251 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
252 |
+
-->
|
253 |
+
|
254 |
+
## Evaluation
|
255 |
+
|
256 |
+
### Metrics
|
257 |
+
|
258 |
+
#### Semantic Similarity
|
259 |
+
* Dataset: `sts-dev`
|
260 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
261 |
+
|
262 |
+
| Metric | Value |
|
263 |
+
| :----------------- | :--------- |
|
264 |
+
| pearson_cosine | 0.8681 |
|
265 |
+
| spearman_cosine | 0.8689 |
|
266 |
+
| pearson_manhattan | 0.7794 |
|
267 |
+
| spearman_manhattan | 0.7817 |
|
268 |
+
| pearson_euclidean | 0.781 |
|
269 |
+
| spearman_euclidean | 0.7836 |
|
270 |
+
| pearson_dot | 0.718 |
|
271 |
+
| spearman_dot | 0.7553 |
|
272 |
+
| pearson_max | 0.8681 |
|
273 |
+
| **spearman_max** | **0.8689** |
|
274 |
+
|
275 |
+
<!--
|
276 |
+
## Bias, Risks and Limitations
|
277 |
+
|
278 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
279 |
+
-->
|
280 |
+
|
281 |
+
<!--
|
282 |
+
### Recommendations
|
283 |
+
|
284 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
285 |
+
-->
|
286 |
+
|
287 |
+
|
288 |
+
### Framework Versions
|
289 |
+
- Python: 3.10.13
|
290 |
+
- Sentence Transformers: 3.0.1
|
291 |
+
- Transformers: 4.42.4
|
292 |
+
- PyTorch: 2.3.0+cu121
|
293 |
+
- Accelerate: 0.30.1
|
294 |
+
- Datasets: 2.16.1
|
295 |
+
- Tokenizers: 0.19.1
|
296 |
+
|
297 |
+
## Citation
|
298 |
+
|
299 |
+
### BibTeX
|
300 |
+
|
301 |
+
```bibtex
|
302 |
+
@misc{zhang2024mgte,
|
303 |
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
304 |
+
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
|
305 |
+
year={2024},
|
306 |
+
eprint={2407.19669},
|
307 |
+
archivePrefix={arXiv},
|
308 |
+
primaryClass={cs.CL},
|
309 |
+
url={https://arxiv.org/abs/2407.19669},
|
310 |
+
}
|
311 |
+
```
|
312 |
+
|
313 |
+
```bibtex
|
314 |
+
@inproceedings{reimers-2019-sentence-bert,
|
315 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
316 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
317 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
318 |
+
month = "11",
|
319 |
+
year = "2019",
|
320 |
+
publisher = "Association for Computational Linguistics",
|
321 |
+
url = "https://arxiv.org/abs/1908.10084",
|
322 |
+
}
|
323 |
+
```
|
324 |
+
|
325 |
+
<!--
|
326 |
+
## Glossary
|
327 |
+
|
328 |
+
*Clearly define terms in order to be accessible across audiences.*
|
329 |
+
-->
|
330 |
+
|
331 |
+
<!--
|
332 |
+
## Model Card Authors
|
333 |
+
|
334 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
335 |
+
-->
|
336 |
+
|
337 |
+
<!--
|
338 |
+
## Model Card Contact
|
339 |
+
|
340 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
341 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "Alibaba-NLP/gte-multilingual-base",
|
3 |
+
"architectures": [
|
4 |
+
"NewModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "Alibaba-NLP/new-impl--configuration.NewConfig",
|
9 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
10 |
+
"AutoModelForMaskedLM": "Alibaba-NLP/new-impl--modeling.NewForMaskedLM",
|
11 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
12 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
13 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
14 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
15 |
+
},
|
16 |
+
"classifier_dropout": 0.0,
|
17 |
+
"hidden_act": "gelu",
|
18 |
+
"hidden_dropout_prob": 0.1,
|
19 |
+
"hidden_size": 768,
|
20 |
+
"id2label": {
|
21 |
+
"0": "LABEL_0"
|
22 |
+
},
|
23 |
+
"initializer_range": 0.02,
|
24 |
+
"intermediate_size": 3072,
|
25 |
+
"label2id": {
|
26 |
+
"LABEL_0": 0
|
27 |
+
},
|
28 |
+
"layer_norm_eps": 1e-12,
|
29 |
+
"layer_norm_type": "layer_norm",
|
30 |
+
"logn_attention_clip1": false,
|
31 |
+
"logn_attention_scale": false,
|
32 |
+
"max_position_embeddings": 8192,
|
33 |
+
"model_type": "new",
|
34 |
+
"num_attention_heads": 12,
|
35 |
+
"num_hidden_layers": 12,
|
36 |
+
"pack_qkv": true,
|
37 |
+
"pad_token_id": 1,
|
38 |
+
"position_embedding_type": "rope",
|
39 |
+
"rope_scaling": {
|
40 |
+
"factor": 8.0,
|
41 |
+
"type": "ntk"
|
42 |
+
},
|
43 |
+
"rope_theta": 20000,
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.42.4",
|
46 |
+
"type_vocab_size": 1,
|
47 |
+
"unpad_inputs": false,
|
48 |
+
"use_memory_efficient_attention": false,
|
49 |
+
"vocab_size": 250048
|
50 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bf4dfd202a39a084bcf63f8d00d8f47ab5d0afd04367bbfd24a44c0e66ecd55
|
3 |
+
size 1221487872
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 8192,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa7a6ad87a7ce8fe196787355f6af7d03aee94d19c54a5eb1392ed18c8ef451a
|
3 |
+
size 17082988
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 8192,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|