|
from scipy.spatial.distance import cdist |
|
from scipy.optimize import linear_sum_assignment |
|
import numpy as np |
|
|
|
|
|
def zeromean_normalize(vertices): |
|
vertices = np.array(vertices) |
|
vertices = vertices - vertices.mean(axis=0) |
|
vertices = vertices / (1e-6 + np.linalg.norm(vertices, axis=1)[:, None]) |
|
return vertices |
|
|
|
def preregister_mean_std(verts_to_transform, target_verts, single_scale=True): |
|
mu_target = target_verts.mean(axis=0) |
|
mu_in = verts_to_transform.mean(axis=0) |
|
std_target = np.std(target_verts, axis=0) |
|
std_in = np.std(verts_to_transform, axis=0) |
|
|
|
if np.any(std_in == 0): |
|
std_in[std_in == 0] = 1 |
|
if np.any(std_target == 0): |
|
std_target[std_target == 0] = 1 |
|
if np.any(np.isnan(std_in)): |
|
std_in[np.isnan(std_in)] = 1 |
|
if np.any(np.isnan(std_target)): |
|
std_target[np.isnan(std_target)] = 1 |
|
|
|
if single_scale: |
|
std_target = np.linalg.norm(std_target) |
|
std_in = np.linalg.norm(std_in) |
|
|
|
transformed_verts = (verts_to_transform - mu_in) / std_in |
|
transformed_verts = transformed_verts * std_target + mu_target |
|
|
|
return transformed_verts |
|
|
|
|
|
def compute_WED(pd_vertices, pd_edges, gt_vertices, gt_edges, cv=1000.0, ce=1.0, normalized=True, prenorm=False, preregister=True, register=False, single_scale=True): |
|
pd_vertices = np.array(pd_vertices) |
|
gt_vertices = np.array(gt_vertices) |
|
|
|
|
|
if prenorm: |
|
pd_vertices = zeromean_normalize(pd_vertices) |
|
gt_vertices = zeromean_normalize(gt_vertices) |
|
|
|
if preregister: |
|
pd_vertices = preregister_mean_std(pd_vertices, gt_vertices, single_scale=single_scale) |
|
|
|
|
|
pd_edges = np.array(pd_edges) |
|
gt_edges = np.array(gt_edges) |
|
|
|
|
|
|
|
if register: |
|
|
|
from scipy.spatial.transform import Rotation as R |
|
from scipy.optimize import minimize |
|
|
|
def transform(x, pd_vertices): |
|
|
|
rotation = R.from_rotvec(x[:3]) |
|
translation = x[3:6] |
|
scale = x[6] |
|
return scale * rotation.apply(pd_vertices) + translation |
|
|
|
def cost_function(x, pd_vertices, gt_vertices): |
|
pd_vertices_transformed = transform(x, pd_vertices) |
|
distances = cdist(pd_vertices_transformed, gt_vertices, metric='euclidean') |
|
row_ind, col_ind = linear_sum_assignment(distances) |
|
translation_costs = np.sum(distances[row_ind, col_ind]) |
|
|
|
return translation_costs |
|
|
|
x0 = np.array([0, 0, 0, 0, 0, 0, 1]) |
|
|
|
|
|
res = minimize(cost_function, x0, args=(pd_vertices, gt_vertices), bounds=[(-np.pi, np.pi), (-np.pi, np.pi), (-np.pi, np.pi), (-500, 500), (-500, 500), (-500, 500), (0.1, 3)]) |
|
|
|
|
|
pd_vertices = transform(res.x, pd_vertices) |
|
|
|
|
|
|
|
distances = cdist(pd_vertices, gt_vertices, metric='euclidean') |
|
row_ind, col_ind = linear_sum_assignment(distances) |
|
|
|
|
|
|
|
translation_costs = np.sum(distances[row_ind, col_ind]) |
|
|
|
|
|
unmatched_pd_indices = set(range(len(pd_vertices))) - set(row_ind) |
|
deletion_costs = cv * len(unmatched_pd_indices) |
|
|
|
|
|
unmatched_gt_indices = set(range(len(gt_vertices))) - set(col_ind) |
|
insertion_costs = cv * len(unmatched_gt_indices) |
|
|
|
|
|
updated_pd_edges = [(col_ind[np.where(row_ind == edge[0])[0][0]], col_ind[np.where(row_ind == edge[1])[0][0]]) for edge in pd_edges if edge[0] in row_ind and edge[1] in row_ind] |
|
pd_edges_set = set(map(tuple, [set(edge) for edge in updated_pd_edges])) |
|
gt_edges_set = set(map(tuple, [set(edge) for edge in gt_edges])) |
|
|
|
|
|
|
|
edges_to_delete = pd_edges_set - gt_edges_set |
|
|
|
|
|
vert_tf = [np.where(col_ind == v)[0][0] if v in col_ind else 0 for v in range(len(gt_vertices))] |
|
deletion_edge_costs = ce * sum(np.linalg.norm(pd_vertices[vert_tf[edge[0]]] - pd_vertices[vert_tf[edge[1]]]) for edge in edges_to_delete) |
|
|
|
|
|
|
|
edges_to_insert = gt_edges_set - pd_edges_set |
|
insertion_edge_costs = ce * sum(np.linalg.norm(gt_vertices[edge[0]] - gt_vertices[edge[1]]) for edge in edges_to_insert) |
|
|
|
|
|
WED = translation_costs + deletion_costs + insertion_costs + deletion_edge_costs + insertion_edge_costs |
|
|
|
|
|
|
|
if normalized: |
|
total_length_of_gt_edges = np.linalg.norm((gt_vertices[gt_edges[:, 0]] - gt_vertices[gt_edges[:, 1]]), axis=1).sum() |
|
WED = WED / total_length_of_gt_edges |
|
|
|
|
|
return WED |