utsavnandi commited on
Commit
0ded4f7
1 Parent(s): 057a7a8
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
LunarLander-v2-ppo-mlp-1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98068effd19b11454839e44aa9fd66c38a0e54d20d784799b317dfb18c634fbe
3
+ size 147751
LunarLander-v2-ppo-mlp-1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
LunarLander-v2-ppo-mlp-1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1f4e3fda70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1f4e3fdb00>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1f4e3fdb90>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1f4e3fdc20>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1f4e3fdcb0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1f4e3fdd40>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1f4e3fddd0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1f4e3fde60>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1f4e3fdef0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1f4e3fdf80>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1f4e404050>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f1f4e446bd0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 524288,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": 42,
49
+ "action_noise": null,
50
+ "start_time": 1651860643.3070292,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbK7Ty4Zvq5C2PCM891AS8vi0y7lRm0swAAgD8AAIA/pqv1vdC0gD+VSYW+05r9vigxHb6cFye+AAAAAAAAAAAaB9a9rt3/uo2ynDx2Xnm9L6qXO/jaWj4AAIA/AAAAADOp8TxcAyS6ZniOOSufkDSunHm52iChuAAAgD8AAIA/DRKGvVyvEbqlH584/ujQM97q/7rn7Li3AACAPwAAgD/AbtC9pABiuYT4HbwERq68ETOwuoXRmD0AAIA/AAAAAJqiXj3JOrE/L/IqPg8d/740O389ImQXvQAAAAAAAAAAjSOHPSmkNrrOUdM2CdS2MVgbcrvqo/21AACAPwAAgD9mIcm9XGtwuvBgz7lvI8C0fmcIuq0G8zgAAIA/AACAP5ohHzyF65W3IXFEOwf5WTiDgiW7OkX5uQAAgD8AAIA/GnREvSlwZLro/Y86DAjpNyanRTtRAqe5AACAPwAAgD9m8mY8XMtVuutVILvsHcy26CTQOlEXNToAAIA/AACAP3OaLb7mlJ0/82HhvgOvKb9WijW+bwEzvgAAAAAAAAAAgH+oPSzyuz92kBY/RwsYPUIFoTzePlA+AAAAAAAAAACT5Ue+lDbSvI30Kb3mT8C7nys4Pls9lDwAAIA/AACAP3PYgz1cSwO66mOJOvC71zUsmI470M6kuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.04857599999999995,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc6Hyr+VVS0CUhpRSlIwBbJRLm4wBdJRHQIB9ym/Firl1fZQoaAZoCWgPQwjt9IO6yBhkQJSGlFKUaBVN6ANoFkdAgIJ/YzzmOnV9lChoBmgJaA9DCHl4z4HlckRAlIaUUpRoFUuIaBZHQICClTJhfBx1fZQoaAZoCWgPQwjxEpz6wORlQJSGlFKUaBVN6ANoFkdAgIOqekHlfnV9lChoBmgJaA9DCBEAHHv2sD5AlIaUUpRoFUvOaBZHQICNxTIeYD11fZQoaAZoCWgPQwjgumJG+KphQJSGlFKUaBVN6ANoFkdAgJGdkSVW0nV9lChoBmgJaA9DCCf3OxQFklJAlIaUUpRoFUvDaBZHQICWIfjjrAx1fZQoaAZoCWgPQwibq+Y5orVhQJSGlFKUaBVN6ANoFkdAgJeg2ZRbbHV9lChoBmgJaA9DCJ5g/3Vu7VBAlIaUUpRoFUuvaBZHQICe8ojOcDt1fZQoaAZoCWgPQwiRe7q6Y5E+QJSGlFKUaBVLsGgWR0CAovGR3eN2dX2UKGgGaAloD0MI1JgQc0lLZUCUhpRSlGgVTegDaBZHQICjcwDeTFF1fZQoaAZoCWgPQwjx8QnZeeVFQJSGlFKUaBVLomgWR0CAp5tfG+9KdX2UKGgGaAloD0MIRmCsb2AaYUCUhpRSlGgVTegDaBZHQICqr67/XGx1fZQoaAZoCWgPQwhMHHkgskxwQJSGlFKUaBVN7wJoFkdAgMSQ0oBq9HV9lChoBmgJaA9DCKcf1EWKyWZAlIaUUpRoFU3oA2gWR0CAxZ1LamGedX2UKGgGaAloD0MIZryt9NpqZkCUhpRSlGgVTegDaBZHQIDF9IClrM11fZQoaAZoCWgPQwg/5gMCnVpjQJSGlFKUaBVN6ANoFkdAgM2Hqmj0tnV9lChoBmgJaA9DCNJSeTvCBGZAlIaUUpRoFU3oA2gWR0CAzhIgeRxMdX2UKGgGaAloD0MIaCJsePp4aECUhpRSlGgVTegDaBZHQIDR6FmFrVR1fZQoaAZoCWgPQwgIrYcvE5FmQJSGlFKUaBVN6ANoFkdAgNQcGTs6aXV9lChoBmgJaA9DCHpW0opvakxAlIaUUpRoFUvBaBZHQIDaFjkMkQh1fZQoaAZoCWgPQwhUkJ+NXDM/QJSGlFKUaBVLv2gWR0CA4JngYP5IdX2UKGgGaAloD0MIODC5UWTZYUCUhpRSlGgVTegDaBZHQIGaBa5f+jx1fZQoaAZoCWgPQwhyxFp8ildgQJSGlFKUaBVN6ANoFkdAgZ7tet0V8HV9lChoBmgJaA9DCMv3jEToXWJAlIaUUpRoFU3oA2gWR0CBnwRIz3yqdX2UKGgGaAloD0MI95Dwvb97SUCUhpRSlGgVS9NoFkdAga0nzYmLL3V9lChoBmgJaA9DCMMstHMawmFAlIaUUpRoFU3oA2gWR0CBtP9c8kledX2UKGgGaAloD0MIdcqjG+ELYkCUhpRSlGgVTegDaBZHQIG+ZcC5mRN1fZQoaAZoCWgPQwjdek0PCiJJQJSGlFKUaBVLsWgWR0CBwBx3FDOUdX2UKGgGaAloD0MIwJMWLivSZECUhpRSlGgVTegDaBZHQIHCn420iQl1fZQoaAZoCWgPQwj5hOy8ja1VQJSGlFKUaBVN6ANoFkdAgcMgiml67nV9lChoBmgJaA9DCBdH5SZq5mJAlIaUUpRoFU3oA2gWR0CBxv1Tzd1udX2UKGgGaAloD0MImrZ/ZaVlZUCUhpRSlGgVTegDaBZHQIHJlG9YfXB1fZQoaAZoCWgPQwij5xa6Em1fQJSGlFKUaBVN6ANoFkdAgeAr3TNMXnV9lChoBmgJaA9DCI7LuKkBv3FAlIaUUpRoFU1qAWgWR0CB4K+IMz/IdX2UKGgGaAloD0MImWTkLOyIYUCUhpRSlGgVTegDaBZHQIHhD1EmY0F1fZQoaAZoCWgPQwi3YKkuYKJjQJSGlFKUaBVN6ANoFkdAgegulwcYInV9lChoBmgJaA9DCEc5mE0AsGRAlIaUUpRoFU3oA2gWR0CB655qubI+dX2UKGgGaAloD0MI+fTYlgEHYUCUhpRSlGgVTegDaBZHQIHtr37DVH51fZQoaAZoCWgPQwjidJKtrrJuQJSGlFKUaBVNugNoFkdAge7jnV5KOHV9lChoBmgJaA9DCERQNXo1p21AlIaUUpRoFU0wAmgWR0CB8+ona37UdX2UKGgGaAloD0MIh9uhYbEVYkCUhpRSlGgVTegDaBZHQIH6jyQPqcF1fZQoaAZoCWgPQwiH3XcMj7FjQJSGlFKUaBVN6ANoFkdAgf9V1W8yvnV9lChoBmgJaA9DCKMBvAUS+GRAlIaUUpRoFU3oA2gWR0CB/20gKWszdX2UKGgGaAloD0MI5BWInhRcYkCUhpRSlGgVTegDaBZHQIITIF9roGJ1fZQoaAZoCWgPQwjZWl8ktARxQJSGlFKUaBVNMQJoFkdAghRB7VrhznV9lChoBmgJaA9DCJF7urpjcGZAlIaUUpRoFU3oA2gWR0CCH2UZeiSJdX2UKGgGaAloD0MIzHoxlJMPZECUhpRSlGgVTegDaBZHQIIf3ogV45d1fZQoaAZoCWgPQwiwkLkyKHZjQJSGlFKUaBVN6ANoFkdAgiP3A/LTyHV9lChoBmgJaA9DCLq7zob8lF5AlIaUUpRoFU3oA2gWR0CCJrzTWoWIdX2UKGgGaAloD0MInUmbqnu8XUCUhpRSlGgVTegDaBZHQII85W1c+q11fZQoaAZoCWgPQwjs+Zrlsq9lQJSGlFKUaBVN6ANoFkdAgj3hQN0/4nV9lChoBmgJaA9DCHnMQGV8QmFAlIaUUpRoFU3oA2gWR0CCRa2wV0tAdX2UKGgGaAloD0MIvJaQD3qWZkCUhpRSlGgVTegDaBZHQIJJitmtheB1fZQoaAZoCWgPQwh1yqMbYWJlQJSGlFKUaBVN6ANoFkdAgkugMMI/q3V9lChoBmgJaA9DCMrAAS3djGdAlIaUUpRoFU3oA2gWR0CCTOKFZgXudX2UKGgGaAloD0MIjiPW4tMmcUCUhpRSlGgVTeABaBZHQIJNqMrEtNB1fZQoaAZoCWgPQwholZnS+iNlQJSGlFKUaBVN6ANoFkdAglHtgKF7D3V9lChoBmgJaA9DCNCX3v5c+D9AlIaUUpRoFUu1aBZHQIJWCKxcE/11fZQoaAZoCWgPQwjPvvIgvRZmQJSGlFKUaBVN6ANoFkdAgliwrc0tRXV9lChoBmgJaA9DCE890uC2VGZAlIaUUpRoFU3oA2gWR0CDIpeQdS2qdX2UKGgGaAloD0MIWr3D7dARZECUhpRSlGgVTegDaBZHQIMirwazeGh1fZQoaAZoCWgPQwgTDOcaZmZMQJSGlFKUaBVLpmgWR0CDLk77Kq4pdX2UKGgGaAloD0MISKmEJzT1cECUhpRSlGgVTfsCaBZHQIMyRK6Fuel1fZQoaAZoCWgPQwjQXn089JpmQJSGlFKUaBVN6ANoFkdAgzoyO7xusXV9lChoBmgJaA9DCPd0dcdiJV5AlIaUUpRoFU3oA2gWR0CDO2iKziS8dX2UKGgGaAloD0MIuoRDb/E/b0CUhpRSlGgVTecBaBZHQINEEt/WlM11fZQoaAZoCWgPQwjtZHCUvF5NQJSGlFKUaBVN6ANoFkdAg0k0FKTSs3V9lChoBmgJaA9DCEgVxauslmZAlIaUUpRoFU3oA2gWR0CDUYeg+QlsdX2UKGgGaAloD0MI4iAhyhf3YECUhpRSlGgVTegDaBZHQINtv7N0NjN1fZQoaAZoCWgPQwhcVIuIYjlmQJSGlFKUaBVN6ANoFkdAg29FCswL3XV9lChoBmgJaA9DCLde04OChWBAlIaUUpRoFU3oA2gWR0CDfARoysS1dX2UKGgGaAloD0MImIbhI+KHY0CUhpRSlGgVTegDaBZHQIN+aJl8PWh1fZQoaAZoCWgPQwiAY8+ey7lcQJSGlFKUaBVN6ANoFkdAg4DD/VAiV3V9lChoBmgJaA9DCNjWT/9Zn3BAlIaUUpRoFU3mAWgWR0CDgN7Kq4pddX2UKGgGaAloD0MIXr71YT0ScECUhpRSlGgVTWwCaBZHQIOBZ9kSVW11fZQoaAZoCWgPQwhSf73CgrxlQJSGlFKUaBVN6ANoFkdAg4U+Q+2VmnV9lChoBmgJaA9DCHuH26Hh6nBAlIaUUpRoFUvvaBZHQIOHsrbxmTV1fZQoaAZoCWgPQwhyGTc10AVkQJSGlFKUaBVN6ANoFkdAg4kQMH8jzXV9lChoBmgJaA9DCEYnS633Em5AlIaUUpRoFU01A2gWR0CDjPxtpEhJdX2UKGgGaAloD0MIjNr9KkBSYkCUhpRSlGgVTegDaBZHQIOPNXxOLzh1fZQoaAZoCWgPQwhhGLDkqspkQJSGlFKUaBVN6ANoFkdAg49KhUR3/3V9lChoBmgJaA9DCJJ6T+U0cHFAlIaUUpRoFU0kA2gWR0CDkNJf6XSjdX2UKGgGaAloD0MIWFnbFI81ZECUhpRSlGgVTegDaBZHQIOXV0HQhOh1fZQoaAZoCWgPQwhDrWne8RdxQJSGlFKUaBVNQgFoFkdAg5nMkIHC43V9lChoBmgJaA9DCDJYcar1KXJAlIaUUpRoFU0WAWgWR0CDmizWwu/UdX2UKGgGaAloD0MI0xHAzWK/YkCUhpRSlGgVTegDaBZHQIOm2PFNtZV1fZQoaAZoCWgPQwgPmIdM+dJmQJSGlFKUaBVN6ANoFkdAg7I0dJaq0nV9lChoBmgJaA9DCODaiZIQY3JAlIaUUpRoFU1JAmgWR0CDuswaBI4EdX2UKGgGaAloD0MIu2BwzZ19cUCUhpRSlGgVTYwCaBZHQIPHw5NoJzF1fZQoaAZoCWgPQwg8aeGyChRgQJSGlFKUaBVN6ANoFkdAg8s1GTcIq3V9lChoBmgJaA9DCO1hLxSwqWFAlIaUUpRoFU3oA2gWR0CD188AaNuMdX2UKGgGaAloD0MIAoOkTyuDYECUhpRSlGgVTegDaBZHQIPahX6qKgt1fZQoaAZoCWgPQwiKy/EKxP9vQJSGlFKUaBVNkANoFkdAg9x3EZR8+nV9lChoBmgJaA9DCE5gOq3bOGRAlIaUUpRoFU3oA2gWR0CD3U2MsH0LdX2UKGgGaAloD0MImUf+YOAoakCUhpRSlGgVTegDaBZHQIPeBUcXFcZ1fZQoaAZoCWgPQwhdqPxreclPQJSGlFKUaBVLq2gWR0CD7YJE6T4ddX2UKGgGaAloD0MIritmhDcTZUCUhpRSlGgVTegDaBZHQIPtkUfxMFl1fZQoaAZoCWgPQwix22eVmbBhQJSGlFKUaBVN6ANoFkdAg+2xSHdoFnV9lChoBmgJaA9DCGKBr+jWLGNAlIaUUpRoFU3oA2gWR0CD79KT0QK8dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 160,
79
+ "n_steps": 2048,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
LunarLander-v2-ppo-mlp-1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a473a0024dc008bb873a75864bd1c47339773e1bd1eed961eeba09897918cb45
3
+ size 84893
LunarLander-v2-ppo-mlp-1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d5e94092859bbc773f433125cb592f43b1f77f02ccfc27fbcada6530da9e7ac
3
+ size 43201
LunarLander-v2-ppo-mlp-1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2-ppo-mlp-1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO-MLP
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 275.47 +/- 16.61
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO-MLP** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO-MLP** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1f4e3fda70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1f4e3fdb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1f4e3fdb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1f4e3fdc20>", "_build": "<function ActorCriticPolicy._build at 0x7f1f4e3fdcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1f4e3fdd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1f4e3fddd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1f4e3fde60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1f4e3fdef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1f4e3fdf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1f4e404050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1f4e446bd0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgOqusbU2gilyR2usHxsB8ODwPlP8DnQHtT5Lp5As1Zo0A1d/IgByrGX5WPj+YHrHyLKyh4hXKDJFaQJujZPi4V1aUdvCKfatLNSuXOV/F8XFh/kTtsj/3EHNsPBOQcI9QXOQpibpaN5MrFzzNwuAWH43gGue8qtB4aGC9iN4ahyyQQUeWMFtl6vec/liW0xCoIVjn6KHFx0f4OBQ7AcYCiU628XoVzbf25OyQPkbQCpBfiqhDmP+VlQh22vcwuHLFfllSme2qXBsJeJYMMauSbYWKof1l2Usp6ASxQZkN6RFIgijHmcXwHGmEBkvHk8HOY1QgDnxB32GtsoO4eRw5SQQYbR68BHIaa1LDLuxMY5zgvPRgLbkfwTmoKI/pZDuck50KCuILgWbgA06hUYxdtHRsNHZNZVGA2R+YrVLK+ByOdUglJQ4/cEfKUsLtndII0Tl8d3Tvciv0mpMF7PRGJbQRHyyoFX8oRxsHZoVjnaXMX2eXrH2VMtjRxy0Q6eO6ZUlWenmBBSnhwpGK7GjiZnVkWMKP4EJFBZ8nacUsPMRfaCdp2pAmlmH64yOD7GZftGJmj767SlBz+Ae5C7gtmaSg/YwlQCIHnVUdyfR1c8CsD+/Tv38cdmqv/Z4+lkqrEJGLfbuXJxjRw6BYJqvgOGZ2hf0COPWGlIdtIQtkqi0/txxQnWzgyKVi0VgqoyeboxUHbWAdRBvI9c89H7f+kHrYfKxvYqExYfk8Y4N1ywZPhM2ZOJJeXkrwlaWw349fAP1Luf1kWw5rx9GCTI45yrJP5uFcFLQRGW+lCEG1kKpD40f1EFpiufRTGimBNmfQpLx3XT65nTt4BvoFrhEx5rIpx4H8fpM4EBC4EC+NOLVG3VrZpOAYgmJwl8NIe/KqMwSwVwz1AkLOuHzF14axQBR2fIU1fp3bm2rO2LWTto2BHJfZk7rOIAS1k7i1UBTlA8pUuyRDZXgyXJNF87yTyNTe4e40XFevcT9SW+9xYDgITfkIo78wBu77/dbMKG5NZgCkGEBqCtGnTuBd1raREpsOrjuRA1AazdD7EnK3LVJ3Rc7AL2pHOAeYuFs5EXFSP89xCrEXWdvYox0oF+CPmSY3cHY8kCp+CYXeIX5bAgdiU+fY/SjIm0OwBO/ga5N3FQ6an3PMzrbpk/88mLs7YtO+ySlmkawbJ+TjU2TpTLQHSDJdZRp29BtO3PQaj7eStmKghNZQb9rGFmuLO5JE+DQm5X+NjoB6oD5ngyvsYi4VR0dl7J0Q9uXbVT7K6QM69DvzDYxxH+9s+RRNwU5Bs5BY6zPla0/P9i0n5Eb35P9lalkm0HELa6gWGe+A3TVLC3MV2D39M7WYkSpIxMbzSbit57Wv7f9VoiqTu+XPVyhm0gFAOqQDis8uur6xhKWtQqa9zVAG3IOZw+QYLXb2yUZc2IbIDwurmrU+UBD3hGQBPhE12oHMObpOEln3j556SB9iHWY5SeeedU5MglUIRYs38n8QgjgU0ejBqDgBy9tyd3SNUwXmJo5YQgUnKFSyr+46WIbfVfp+A2psurAUPiT8EXaEVRiZxLhECNM1UmXaUQNjLnc6lGFCvRHCPNvyr5QZlr/j6PfW7GB2tiJ89lg0tAnnWTdXEbQM8lk9rnVHVLCzhNXCPKuJuUVR2PLOQ2G25KqYZMwRCpVcYxP89zxIjLr4sr9wCkILkbinOrrXhGwWir6/i+ZHdHQAsvQxyaSCsS9zLXPoQn0hr0As0TPEFQUCB120czCrbJ4iF9Y+ZGbF3yLblIMl7/n+VE5h2AzVX9Lg4zsK3w1P9jssDDfZawEPEf2TcW/RA6PvQXs8YzGNcE4QXrpZASnDEgnUf8Kfr+e+8ruMmmn7BCZJTOAJ2ODDu6HP3LzAcFlqEOyKCfAJ47wXKTKRWceBB8fhfonSDYRjC9h5pRFCToEgGntnOyfmLVVv3FsLF9eMMbldFQZdUOzWpKrM7ICGhy5r1284pQpKKdNLQ7jWEr7oheDje9FM5syinmuAHJFsfSMX4HDQnx5p74HCJaVBHyG8Ov/0nUan/k9ZeuEY0yAi4XyMyAM7JJ69ALBiJSxm6ln4EptHCwzfrtHkONNFCpBu8Cp0GUiF5YwjJZVIApDX+Z7VJFEdJQz2rO6014hoNVxl/pPnUVFZ7otOw8zt2r6PyNe0S1cqt8eqgAZYUC4RUgZPGLzvC1LnNHydC4rdYWq1tsuM+RbdyT9BOQOQ4UrEh4Je3tIQDaneX8AqI61BahgYOlcqTUmfyvDF31FhcbXWwpt/KdaeXypun8PwuFLMpi3lWQtyrhaHYfN2vF5htIX3v/CG4Gmm9nlGjfFYFxGLJKuDAJyMTMjZSTi4aMfVM7NIBTD3/1Lad20Qo0aAMXl/NOvs+UPT7C53v+EGICa+npcfDOtLLWmyuALM/vg5oe2fozqInBVn76uHy5WRS7ITM6ZJs9NlMeUf2MpCjBvFsl6MAOj6u/95bA83hFyDfIUscOOKNZrloDmZ1dgwWoZhiKZfEDNE6Y4qO+x8EmdTK69npIc7adP/MuVNQJys0/9OXn4XCcjymNbHlwEaUHhMi6jfmdawhec1M5HIYv5MK2mydefzC2HdlpNn0wxT9V+o1LdhBrB+SlF086FRPaWE5CHhJZ13Bu2qHW0KNEuqGxhjoAMb+PUNtIgzKHrw7bDFgOC+fGLILSd/taVljB99y8rIHQQZznD/xyFCKiqpuJYp5zrSRwh/qAyECeN0H83388G0xaxOEet7J9bkS2EOw3aEcY0QTqEDwDLCXMrpGbsoP8G7hPPcmJ7q9D5RnZQjpt6nJICeupoUb53enc7NeylaRFNT1WlW8zpmPhIp//fWw8eshNYvL0uM/vye+ahBvvMxCAdOjrtWb0b+h+3zMUTuUJV9sC0zkclZHeJX29ZWocGCL15R1pyI9CGuFAZyOwFI5E73zkb5uzBO1V9qWjADmvi+chsq8eaE6MFo/5YF952L1VX/ZyStm58RbIqmjBZzCM+csO6iNPyeva4YtMtpCUZN3X322dxFd/XJ6pipFv/67fs7eOnf81obOIiR0s/bYpxnZlRqttk57eZvyL7qv3Ho9n/qWjEEqTscnqA0jBBnT4plChVvdy+XleD8Ccft7igOEFWW9zjyX+Es6RL2bQo4/dIBIDSCrFW28YwbanyT7fcugE4r7HV/sHgdf5J5KUs1SQHeXJg/lGMo6AfJTEK0jHfPDgJ/OyQjS3Z+rICcLcRvbLWjA7iezDKh79W7JGBGK8MgwiCeE2nPCzpXTFmiEbpCmqXTZmBfafnTGd3BgeGA0FYlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": 42, "action_noise": null, "start_time": 1651860643.3070292, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbK7Ty4Zvq5C2PCM891AS8vi0y7lRm0swAAgD8AAIA/pqv1vdC0gD+VSYW+05r9vigxHb6cFye+AAAAAAAAAAAaB9a9rt3/uo2ynDx2Xnm9L6qXO/jaWj4AAIA/AAAAADOp8TxcAyS6ZniOOSufkDSunHm52iChuAAAgD8AAIA/DRKGvVyvEbqlH584/ujQM97q/7rn7Li3AACAPwAAgD/AbtC9pABiuYT4HbwERq68ETOwuoXRmD0AAIA/AAAAAJqiXj3JOrE/L/IqPg8d/740O389ImQXvQAAAAAAAAAAjSOHPSmkNrrOUdM2CdS2MVgbcrvqo/21AACAPwAAgD9mIcm9XGtwuvBgz7lvI8C0fmcIuq0G8zgAAIA/AACAP5ohHzyF65W3IXFEOwf5WTiDgiW7OkX5uQAAgD8AAIA/GnREvSlwZLro/Y86DAjpNyanRTtRAqe5AACAPwAAgD9m8mY8XMtVuutVILvsHcy26CTQOlEXNToAAIA/AACAP3OaLb7mlJ0/82HhvgOvKb9WijW+bwEzvgAAAAAAAAAAgH+oPSzyuz92kBY/RwsYPUIFoTzePlA+AAAAAAAAAACT5Ue+lDbSvI30Kb3mT8C7nys4Pls9lDwAAIA/AACAP3PYgz1cSwO66mOJOvC71zUsmI470M6kuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIc6Hyr+VVS0CUhpRSlIwBbJRLm4wBdJRHQIB9ym/Firl1fZQoaAZoCWgPQwjt9IO6yBhkQJSGlFKUaBVN6ANoFkdAgIJ/YzzmOnV9lChoBmgJaA9DCHl4z4HlckRAlIaUUpRoFUuIaBZHQICClTJhfBx1fZQoaAZoCWgPQwjxEpz6wORlQJSGlFKUaBVN6ANoFkdAgIOqekHlfnV9lChoBmgJaA9DCBEAHHv2sD5AlIaUUpRoFUvOaBZHQICNxTIeYD11fZQoaAZoCWgPQwjgumJG+KphQJSGlFKUaBVN6ANoFkdAgJGdkSVW0nV9lChoBmgJaA9DCCf3OxQFklJAlIaUUpRoFUvDaBZHQICWIfjjrAx1fZQoaAZoCWgPQwibq+Y5orVhQJSGlFKUaBVN6ANoFkdAgJeg2ZRbbHV9lChoBmgJaA9DCJ5g/3Vu7VBAlIaUUpRoFUuvaBZHQICe8ojOcDt1fZQoaAZoCWgPQwiRe7q6Y5E+QJSGlFKUaBVLsGgWR0CAovGR3eN2dX2UKGgGaAloD0MI1JgQc0lLZUCUhpRSlGgVTegDaBZHQICjcwDeTFF1fZQoaAZoCWgPQwjx8QnZeeVFQJSGlFKUaBVLomgWR0CAp5tfG+9KdX2UKGgGaAloD0MIRmCsb2AaYUCUhpRSlGgVTegDaBZHQICqr67/XGx1fZQoaAZoCWgPQwhMHHkgskxwQJSGlFKUaBVN7wJoFkdAgMSQ0oBq9HV9lChoBmgJaA9DCKcf1EWKyWZAlIaUUpRoFU3oA2gWR0CAxZ1LamGedX2UKGgGaAloD0MIZryt9NpqZkCUhpRSlGgVTegDaBZHQIDF9IClrM11fZQoaAZoCWgPQwg/5gMCnVpjQJSGlFKUaBVN6ANoFkdAgM2Hqmj0tnV9lChoBmgJaA9DCNJSeTvCBGZAlIaUUpRoFU3oA2gWR0CAzhIgeRxMdX2UKGgGaAloD0MIaCJsePp4aECUhpRSlGgVTegDaBZHQIDR6FmFrVR1fZQoaAZoCWgPQwgIrYcvE5FmQJSGlFKUaBVN6ANoFkdAgNQcGTs6aXV9lChoBmgJaA9DCHpW0opvakxAlIaUUpRoFUvBaBZHQIDaFjkMkQh1fZQoaAZoCWgPQwhUkJ+NXDM/QJSGlFKUaBVLv2gWR0CA4JngYP5IdX2UKGgGaAloD0MIODC5UWTZYUCUhpRSlGgVTegDaBZHQIGaBa5f+jx1fZQoaAZoCWgPQwhyxFp8ildgQJSGlFKUaBVN6ANoFkdAgZ7tet0V8HV9lChoBmgJaA9DCMv3jEToXWJAlIaUUpRoFU3oA2gWR0CBnwRIz3yqdX2UKGgGaAloD0MI95Dwvb97SUCUhpRSlGgVS9NoFkdAga0nzYmLL3V9lChoBmgJaA9DCMMstHMawmFAlIaUUpRoFU3oA2gWR0CBtP9c8kledX2UKGgGaAloD0MIdcqjG+ELYkCUhpRSlGgVTegDaBZHQIG+ZcC5mRN1fZQoaAZoCWgPQwjdek0PCiJJQJSGlFKUaBVLsWgWR0CBwBx3FDOUdX2UKGgGaAloD0MIwJMWLivSZECUhpRSlGgVTegDaBZHQIHCn420iQl1fZQoaAZoCWgPQwj5hOy8ja1VQJSGlFKUaBVN6ANoFkdAgcMgiml67nV9lChoBmgJaA9DCBdH5SZq5mJAlIaUUpRoFU3oA2gWR0CBxv1Tzd1udX2UKGgGaAloD0MImrZ/ZaVlZUCUhpRSlGgVTegDaBZHQIHJlG9YfXB1fZQoaAZoCWgPQwij5xa6Em1fQJSGlFKUaBVN6ANoFkdAgeAr3TNMXnV9lChoBmgJaA9DCI7LuKkBv3FAlIaUUpRoFU1qAWgWR0CB4K+IMz/IdX2UKGgGaAloD0MImWTkLOyIYUCUhpRSlGgVTegDaBZHQIHhD1EmY0F1fZQoaAZoCWgPQwi3YKkuYKJjQJSGlFKUaBVN6ANoFkdAgegulwcYInV9lChoBmgJaA9DCEc5mE0AsGRAlIaUUpRoFU3oA2gWR0CB655qubI+dX2UKGgGaAloD0MI+fTYlgEHYUCUhpRSlGgVTegDaBZHQIHtr37DVH51fZQoaAZoCWgPQwjidJKtrrJuQJSGlFKUaBVNugNoFkdAge7jnV5KOHV9lChoBmgJaA9DCERQNXo1p21AlIaUUpRoFU0wAmgWR0CB8+ona37UdX2UKGgGaAloD0MIh9uhYbEVYkCUhpRSlGgVTegDaBZHQIH6jyQPqcF1fZQoaAZoCWgPQwiH3XcMj7FjQJSGlFKUaBVN6ANoFkdAgf9V1W8yvnV9lChoBmgJaA9DCKMBvAUS+GRAlIaUUpRoFU3oA2gWR0CB/20gKWszdX2UKGgGaAloD0MI5BWInhRcYkCUhpRSlGgVTegDaBZHQIITIF9roGJ1fZQoaAZoCWgPQwjZWl8ktARxQJSGlFKUaBVNMQJoFkdAghRB7VrhznV9lChoBmgJaA9DCJF7urpjcGZAlIaUUpRoFU3oA2gWR0CCH2UZeiSJdX2UKGgGaAloD0MIzHoxlJMPZECUhpRSlGgVTegDaBZHQIIf3ogV45d1fZQoaAZoCWgPQwiwkLkyKHZjQJSGlFKUaBVN6ANoFkdAgiP3A/LTyHV9lChoBmgJaA9DCLq7zob8lF5AlIaUUpRoFU3oA2gWR0CCJrzTWoWIdX2UKGgGaAloD0MInUmbqnu8XUCUhpRSlGgVTegDaBZHQII85W1c+q11fZQoaAZoCWgPQwjs+Zrlsq9lQJSGlFKUaBVN6ANoFkdAgj3hQN0/4nV9lChoBmgJaA9DCHnMQGV8QmFAlIaUUpRoFU3oA2gWR0CCRa2wV0tAdX2UKGgGaAloD0MIvJaQD3qWZkCUhpRSlGgVTegDaBZHQIJJitmtheB1fZQoaAZoCWgPQwh1yqMbYWJlQJSGlFKUaBVN6ANoFkdAgkugMMI/q3V9lChoBmgJaA9DCMrAAS3djGdAlIaUUpRoFU3oA2gWR0CCTOKFZgXudX2UKGgGaAloD0MIjiPW4tMmcUCUhpRSlGgVTeABaBZHQIJNqMrEtNB1fZQoaAZoCWgPQwholZnS+iNlQJSGlFKUaBVN6ANoFkdAglHtgKF7D3V9lChoBmgJaA9DCNCX3v5c+D9AlIaUUpRoFUu1aBZHQIJWCKxcE/11fZQoaAZoCWgPQwjPvvIgvRZmQJSGlFKUaBVN6ANoFkdAgliwrc0tRXV9lChoBmgJaA9DCE890uC2VGZAlIaUUpRoFU3oA2gWR0CDIpeQdS2qdX2UKGgGaAloD0MIWr3D7dARZECUhpRSlGgVTegDaBZHQIMirwazeGh1fZQoaAZoCWgPQwgTDOcaZmZMQJSGlFKUaBVLpmgWR0CDLk77Kq4pdX2UKGgGaAloD0MISKmEJzT1cECUhpRSlGgVTfsCaBZHQIMyRK6Fuel1fZQoaAZoCWgPQwjQXn089JpmQJSGlFKUaBVN6ANoFkdAgzoyO7xusXV9lChoBmgJaA9DCPd0dcdiJV5AlIaUUpRoFU3oA2gWR0CDO2iKziS8dX2UKGgGaAloD0MIuoRDb/E/b0CUhpRSlGgVTecBaBZHQINEEt/WlM11fZQoaAZoCWgPQwjtZHCUvF5NQJSGlFKUaBVN6ANoFkdAg0k0FKTSs3V9lChoBmgJaA9DCEgVxauslmZAlIaUUpRoFU3oA2gWR0CDUYeg+QlsdX2UKGgGaAloD0MI4iAhyhf3YECUhpRSlGgVTegDaBZHQINtv7N0NjN1fZQoaAZoCWgPQwhcVIuIYjlmQJSGlFKUaBVN6ANoFkdAg29FCswL3XV9lChoBmgJaA9DCLde04OChWBAlIaUUpRoFU3oA2gWR0CDfARoysS1dX2UKGgGaAloD0MImIbhI+KHY0CUhpRSlGgVTegDaBZHQIN+aJl8PWh1fZQoaAZoCWgPQwiAY8+ey7lcQJSGlFKUaBVN6ANoFkdAg4DD/VAiV3V9lChoBmgJaA9DCNjWT/9Zn3BAlIaUUpRoFU3mAWgWR0CDgN7Kq4pddX2UKGgGaAloD0MIXr71YT0ScECUhpRSlGgVTWwCaBZHQIOBZ9kSVW11fZQoaAZoCWgPQwhSf73CgrxlQJSGlFKUaBVN6ANoFkdAg4U+Q+2VmnV9lChoBmgJaA9DCHuH26Hh6nBAlIaUUpRoFUvvaBZHQIOHsrbxmTV1fZQoaAZoCWgPQwhyGTc10AVkQJSGlFKUaBVN6ANoFkdAg4kQMH8jzXV9lChoBmgJaA9DCEYnS633Em5AlIaUUpRoFU01A2gWR0CDjPxtpEhJdX2UKGgGaAloD0MIjNr9KkBSYkCUhpRSlGgVTegDaBZHQIOPNXxOLzh1fZQoaAZoCWgPQwhhGLDkqspkQJSGlFKUaBVN6ANoFkdAg49KhUR3/3V9lChoBmgJaA9DCJJ6T+U0cHFAlIaUUpRoFU0kA2gWR0CDkNJf6XSjdX2UKGgGaAloD0MIWFnbFI81ZECUhpRSlGgVTegDaBZHQIOXV0HQhOh1fZQoaAZoCWgPQwhDrWne8RdxQJSGlFKUaBVNQgFoFkdAg5nMkIHC43V9lChoBmgJaA9DCDJYcar1KXJAlIaUUpRoFU0WAWgWR0CDmizWwu/UdX2UKGgGaAloD0MI0xHAzWK/YkCUhpRSlGgVTegDaBZHQIOm2PFNtZV1fZQoaAZoCWgPQwgPmIdM+dJmQJSGlFKUaBVN6ANoFkdAg7I0dJaq0nV9lChoBmgJaA9DCODaiZIQY3JAlIaUUpRoFU1JAmgWR0CDuswaBI4EdX2UKGgGaAloD0MIu2BwzZ19cUCUhpRSlGgVTYwCaBZHQIPHw5NoJzF1fZQoaAZoCWgPQwg8aeGyChRgQJSGlFKUaBVN6ANoFkdAg8s1GTcIq3V9lChoBmgJaA9DCO1hLxSwqWFAlIaUUpRoFU3oA2gWR0CD188AaNuMdX2UKGgGaAloD0MIAoOkTyuDYECUhpRSlGgVTegDaBZHQIPahX6qKgt1fZQoaAZoCWgPQwiKy/EKxP9vQJSGlFKUaBVNkANoFkdAg9x3EZR8+nV9lChoBmgJaA9DCE5gOq3bOGRAlIaUUpRoFU3oA2gWR0CD3U2MsH0LdX2UKGgGaAloD0MImUf+YOAoakCUhpRSlGgVTegDaBZHQIPeBUcXFcZ1fZQoaAZoCWgPQwhdqPxreclPQJSGlFKUaBVLq2gWR0CD7YJE6T4ddX2UKGgGaAloD0MIritmhDcTZUCUhpRSlGgVTegDaBZHQIPtkUfxMFl1fZQoaAZoCWgPQwix22eVmbBhQJSGlFKUaBVN6ANoFkdAg+2xSHdoFnV9lChoBmgJaA9DCGKBr+jWLGNAlIaUUpRoFU3oA2gWR0CD79KT0QK8dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc4fd5341df8a70270906df6fee9a9ab04bcf47fc3fd6dd46bac8e55128ac194
3
+ size 245161
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 275.47018959782247, "std_reward": 16.605831163633027, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T18:23:10.908588"}