File size: 6,173 Bytes
312c785 2e1ace2 ca68712 c3109e0 ca68712 312c785 accfc54 ca68712 0c11514 f288cec 2141d81 00ae5f4 c3109e0 00ae5f4 75ab5d4 3c4c625 0c11514 00ae5f4 9c1b2c8 0c11514 9c1b2c8 c3109e0 0c11514 94326fc 962e673 9c1b2c8 00ae5f4 9c1b2c8 962e673 8ba83f6 962e673 c3abc14 962e673 c3abc14 00ae5f4 dff1dd8 962e673 c3abc14 00ae5f4 fd7154c 00ae5f4 c3abc14 bb95764 ac0af25 2b9a070 00ae5f4 3c4c625 fd7154c 00ae5f4 fd7154c 69467f5 fd7154c 69467f5 fd7154c 4738475 dde617f 59e1dfb 513f3ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
license: cc-by-nc-sa-4.0
language:
- ab
- af
- am
- ar
- as
- az
- ba
- be
- bn
- bo
- bs
- br
- bg
- ca
- cs
- cv
- cy
- da
- de
- dv
- el
- en
- eo
- et
- eu
- ee
- fo
- fa
- tl
- fi
- fr
- fy
- ga
- gl
- gv
- gn
- gu
- ht
- ha
- he
- hi
- hr
- hu
- hy
- ig
- ia
- id
- is
- it
- jv
- ja
- kn
- ka
- kk
- km
- rw
- ky
- ku
- ko
- lo
- la
- lv
- ln
- lt
- lb
- lg
- ml
- mr
- mk
- mg
- mt
- mn
- mi
- ms
- my
- ne
- nl
- nn
- no
- oc
- or
- pa
- pl
- pt
- ps
- ro
- ru
- sa
- si
- sl
- sk
- sn
- sd
- so
- st
- es
- sq
- sc
- sr
- su
- sw
- sv
- ta
- tt
- te
- tg
- th
- tn
- tk
- tr
- tw
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- yo
- zh
---
**This repository contains the best mHuBERT-147 pre-trained model.**
**MODEL DETAILS:** 3rd iteration, K=1000, HuBERT base architecture (95M parameters), 147 languages.
# mHuBERT-147 models
mHuBERT-147 are compact and competitive multilingual HuBERT models trained on 90K hours of open-license data in 147 languages.
Different from *traditional* HuBERTs, mHuBERT-147 models are trained using faiss IVF discrete speech units.
Training employs a two-level language, data source up-sampling during training. See more information in [our paper](https://arxiv.org/pdf/2406.06371).
# Table of Contents:
1. [Summary](https://huggingface.co/utter-project/mHuBERT-147#mhubert-147-models)
2. [Training Data and Code](https://huggingface.co/utter-project/mHuBERT-147#training)
3. [ML-SUPERB Scores](https://huggingface.co/utter-project/mHuBERT-147#ml-superb-scores)
4. [Languages and Datasets](https://huggingface.co/utter-project/mHuBERT-147#languages-and-datasets)
5. [Intermediate Checkpoints](https://huggingface.co/utter-project/mHuBERT-147#intermediate-checkpoints)
6. [Citing and Funding Information](https://huggingface.co/utter-project/mHuBERT-147#citing-and-funding-information)
**This repository contains:**
* Fairseq checkpoint (original);
* HuggingFace checkpoint (conversion using transformers library);
* Faiss index for continuous pre-training (OPQ16_64,IVF1000_HNSW32,PQ16x4fsr).
**Related Models:**
* [2nd Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147-base-2nd-iter)
* [1st Iteration mHuBERT-147](https://huggingface.co/utter-project/mHuBERT-147-base-1st-iter)
* [CommonVoice Prototype (12 languages)](https://huggingface.co/utter-project/hutter-12-3rd-base)
# Training
* **[Manifest list available here.](https://huggingface.co/utter-project/mHuBERT-147-base-3rd-iter/tree/main/manifest)** Please note that since training, there were CommonVoice removal requests. This means that some of the listed files are no longer available.
* **[Fairseq fork](https://github.com/utter-project/fairseq)** contains the scripts for training with multilingual batching with two-level up-sampling.
* **[Scripts for pre-processing/faiss clustering available here.](https://github.com/utter-project/mHuBERT-147-scripts)**
# ML-SUPERB Scores
mHubert-147 reaches second and first position in the 10min and 1h leaderboards respectively. We achieve new SOTA scores for three LID tasks.
See more information in [our paper](https://arxiv.org/pdf/2406.06371).
![image/png](https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/chXjExnWc3rhhtdsyiU-W.png)
# Languages and Datasets
**Datasets:** For ASR/ST/TTS datasets, only train set is used.
* [Aishell](https://www.openslr.org/33/) and [AISHELL-3](https://www.openslr.org/93/)
* [BibleTTS](https://www.openslr.org/129/)
* [ClovaCall](https://github.com/clovaai/ClovaCall)
* [CommonVoice v11](https://commonvoice.mozilla.org/en/datasets)
* Google TTS data: [Javanese](https://www.openslr.org/41/), [Khmer](https://www.openslr.org/42/), [Nepali](https://www.openslr.org/43/), [Sundanese](https://www.openslr.org/44/), [South African Languages](https://www.openslr.org/32/), [Bengali Languages](https://www.openslr.org/37/)
* IISc-MILE: [Tamil](https://www.openslr.org/127/), [Kannada](https://www.openslr.org/126/)
* [Japanese Versatile Speech](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus)
* [Kokoro](https://github.com/kaiidams/Kokoro-Speech-Dataset)
* [Kosp2e](https://github.com/warnikchow/kosp2e)
* Media Speech: [Turkish Only](https://www.openslr.org/108/)
* [Multilingual LibriSpeech](https://www.openslr.org/94/)
* [Samrómur](https://www.openslr.org/128/)
* [THCHS-30](https://www.openslr.org/18/) and [THUYG-20](https://www.openslr.org/22/)
* [VoxLingua107](https://bark.phon.ioc.ee/voxlingua107/)
* [VoxPopuli](https://github.com/facebookresearch/voxpopuli/)
**Languages present not indexed by Huggingface:** Asturian (ast), Basaa (bas), Cebuano (ceb), Central Kurdish/Sorani (ckb), Hakha Chin (cnh), Hawaiian (haw), Upper Sorbian (hsb) Kabyle (kab), Moksha (mdf), Meadow Mari (mhr), Hill Mari (mrj), Erzya (myv), Taiwanese Hokkien (nan-tw), Sursilvan (rm-sursilv), Vallader (rm-vallader), Sakha (sah), Santali (sat), Scots (sco), Saraiki (skr), Tigre (tig), Tok Pisin (tpi), Akwapen Twi (tw-akuapem), Asante Twi (tw-asante), Votic (vot), Waray (war), Cantonese (yue).
# Intermediate Checkpoints
For allowing research in training dynamics, the intermediate checkpoints for the three iterations are made available under the **CC-BY-NC-SA-4.0** license via a protected link.
* **Downloading page:** https://download.europe.naverlabs.com/mhubert147/
* **User:** user
* **Password:** license mentioned above in bold
# Citing and Funding Information
```
@inproceedings{boito2024mhubert,
author={Boito, Marcely Zanon and Iyer, Vivek and Lagos, Nikolaos and Besacier, Laurent and Calapodescu, Ioan},
title={{mHuBERT-147: A Compact Multilingual HuBERT Model}},
year=2024,
booktitle={Interspeech 2024},
```
<img src="https://cdn-uploads.huggingface.co/production/uploads/62262e19d36494a6f743a28d/HbzC1C-uHe25ewTy2wyoK.png" width=7% height=7%>
This is an output of the European Project UTTER (Unified Transcription and Translation for Extended Reality) funded by European Union’s Horizon Europe Research and Innovation programme under grant agreement number 101070631.
For more information please visit https://he-utter.eu/
NAVER LABS Europe: https://europe.naverlabs.com/
|