v4vardhan commited on
Commit
d573495
·
1 Parent(s): baeadb3

Anand Vardhan First Commit - PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.20 +/- 9.79
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x796b7f1c9630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796b7f1c96c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796b7f1c9750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796b7f1c97e0>", "_build": "<function ActorCriticPolicy._build at 0x796b7f1c9870>", "forward": "<function ActorCriticPolicy.forward at 0x796b7f1c9900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x796b7f1c9990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796b7f1c9a20>", "_predict": "<function ActorCriticPolicy._predict at 0x796b7f1c9ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796b7f1c9b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796b7f1c9bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x796b7f1c9c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796b87c3f640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701048472282883967, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbErLwUtJW6oINxOm8wWTWeLWs5yaqLuQAAgD8AAIA/wCKUPeGMkbrRgoA6cww6NqJhgznS7pS5AACAPwAAgD8zxao87KmgubAWrrvgF522DnLauu0vyjoAAIA/AACAPwC2Kb1I6Yi6IqK/uwubWTeUnfw6RLXEtgAAgD8AAIA/AIxUvK4nmLrKgXq5vnTLtMTGKTvuoY84AACAPwAAgD9mio29SKOwujx3JTxm6Zg5jFOWu26nkzgAAIA/AACAP00Ikz0C/uc+IoQDvrtusb7M9sc8loYOuwAAAAAAAAAATecoPv0Lpz42bx6+GzKjvuZSPz36dDG+AAAAAAAAAAAaVTK9ex6muk8vqbik0JSz081EOjJfwjcAAIA/AACAPwCSzLyF49O5+FDpOnGNxDWRm606n50JugAAgD8AAIA/zQSVvRTIirqvjyi4gjUcs5bdlbp/H0Q3AACAPwAAgD8AmgU9j5IOuqizibizIG0ynd/8ujVrnzcAAIA/AACAP5qjULzhuvo5QN1qu0KIEDgdZp07CWgZOgAAgD8AAIA/AAAuukivrbocpgq6K31PtvTp7zl8Eh85AACAPwAAgD8ANt68SD+Bul2FMrlvBwW0/JWTOaoeTDgAAIA/AACAP2aXQ73DMXm6jYyCO8/+oDiZv0G7v+cUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEyU9jgAIY6MAWyUS72MAXSUR0CXJt92ovSMdX2UKGgGR0Bkc1q33HrAaAdN6ANoCEdAlyud4eLeh3V9lChoBkdAcEU83dbgTGgHTUkBaAhHQJc04/0NBnl1fZQoaAZHQFLDKdhAnlZoB0uzaAhHQJc2KkCV8kV1fZQoaAZHQGcgYe9zwMJoB03oA2gIR0CXNnAEMb3odX2UKGgGR0Bwoul54W1uaAdNXAJoCEdAlzqumR/3FnV9lChoBkdAai+SKWLP2WgHTegDaAhHQJc+MHZ9NN91fZQoaAZHQEwYUwBYFJRoB0utaAhHQJc+zL6k6911fZQoaAZHQGMGtqxkd3loB03oA2gIR0CXPxfwqiGndX2UKGgGR0BgzpF3IMjNaAdN6ANoCEdAlz9o7q6e5HV9lChoBkdAZVYq6OHWSWgHTegDaAhHQJdF/p/wy7B1fZQoaAZHQFIUPOpsGgVoB0uoaAhHQJdGcXenAIp1fZQoaAZHQGg91e8f3exoB03oA2gIR0CXST0wJw85dX2UKGgGR0BkReJDVpbmaAdN6ANoCEdAl0pA5q/M4nV9lChoBkdAZWfHtF8XvmgHTegDaAhHQJdNm6shgVp1fZQoaAZHQGG0k0aZQYVoB03oA2gIR0CXTehPTG5udX2UKGgGR0BLAUc4o7V8aAdLymgIR0CXUuu9eyAydX2UKGgGR0Blhpu63AmBaAdN6ANoCEdAl1O3sLORknV9lChoBkdAZMlvVmSQo2gHTegDaAhHQJdWD+0gKWt1fZQoaAZHQDU2BshxHXpoB0u6aAhHQJdXAkyDZlF1fZQoaAZHQGMtLq+rU9ZoB03oA2gIR0CXWKawljVhdX2UKGgGR0BnOsKG+K0laAdN6ANoCEdAl1rrhaTwD3V9lChoBkdAZlVV6u4gBGgHTegDaAhHQJdrzxOLzf91fZQoaAZHQGSGFGXokiVoB03oA2gIR0CXbfzTWoWIdX2UKGgGR0Bg/XSF49owaAdN6ANoCEdAl3Wr/ffoBHV9lChoBkdAYTGvAXVLBmgHTegDaAhHQJd55He7+UB1fZQoaAZHQFAEt0mtyPxoB0vGaAhHQJd6TsolUqB1fZQoaAZHQGKUxLK3d9FoB03oA2gIR0CXevp2ECeVdX2UKGgGR0BkSGSKWLP2aAdN6ANoCEdAl3tbGBFuvXV9lChoBkdAZwBpMYdhiWgHTegDaAhHQJfNKyGBWgh1fZQoaAZHQGJdp8WsRxtoB03oA2gIR0CXzZvqC6H1dX2UKGgGR0BwU/LgXMyKaAdNcgJoCEdAl88R0EHMU3V9lChoBkdAX8dGYrrgO2gHTegDaAhHQJfRdFLFn7J1fZQoaAZHQGPiW+XZ5A1oB03oA2gIR0CX1UQizLOidX2UKGgGR0BjoIXwb2lEaAdN6ANoCEdAl9pIZdfLLnV9lChoBkdAZPs0iQkonmgHTegDaAhHQJfbGUUwi7l1fZQoaAZHQGHnXKKYRd1oB03oA2gIR0CX3VLX+VC5dX2UKGgGR0Be4BzV+Zw5aAdN6ANoCEdAl94sefZmI3V9lChoBkdAYeHDTBqKxmgHTegDaAhHQJffukhzNll1fZQoaAZHQHIfoHgP3BZoB02IAWgIR0CX40RsdkrgdX2UKGgGR0BmAlorWiDeaAdN6ANoCEdAl/QUpZwGW3V9lChoBkdAZ8781n/T9mgHTegDaAhHQJf7yFRHf/F1fZQoaAZHQGcA/K6nR9hoB03oA2gIR0CYAHbp/wy7dX2UKGgGR0BknRWV/tpmaAdN6ANoCEdAmADjhky1u3V9lChoBkdAYhBkxyn1nWgHTegDaAhHQJgBg8xKxs51fZQoaAZHQGJbkLQXyiFoB03oA2gIR0CYAeK3uuzQdX2UKGgGR0Bxn8Yj0L+haAdNLwFoCEdAmAcZMQEpzHV9lChoBkdAaTBSncclxGgHTegDaAhHQJgIt8NQTEl1fZQoaAZHQGNndTgl4TtoB03oA2gIR0CYCSWFvhqCdX2UKGgGR0BuHgwPAfuDaAdN0wJoCEdAmAwEpd8iOnV9lChoBkdAYkRYAbQ1JmgHTegDaAhHQJgM4GcFyJd1fZQoaAZHQGS8KRMewLVoB03oA2gIR0CYEG8aXKKYdX2UKGgGR0BMwjDbah6CaAdLtmgIR0CYEYm5UcXFdX2UKGgGR0BprlALRa5gaAdN6ANoCEdAmBWFcMVk+XV9lChoBkdAYkM5CngpB2gHTegDaAhHQJgWTlXA/LV1fZQoaAZHQGjUJYDDCP9oB03oA2gIR0CYGLSCOFQEdX2UKGgGR0BiA3C9AX2vaAdN6ANoCEdAmBtJxR2r4nV9lChoBkdAYv3ZyuIRAmgHTegDaAhHQJgeAjLSuyN1fZQoaAZHQHJBYLw4KhNoB02IAmgIR0CYIdRD1GsndX2UKGgGR0BmSV/axoqTaAdN6ANoCEdAmDThKxs2vXV9lChoBkdAZvhQ79ycTmgHTegDaAhHQJg7cCRwIdF1fZQoaAZHQGjKXn6l+E1oB03oA2gIR0CYPCmKqGUOdX2UKGgGR0BkzhiLEUCaaAdN6ANoCEdAmD0vRVp9JHV9lChoBkdAcBq+JgsshGgHTZUCaAhHQJhDkGVzIWB1fZQoaAZHQG27TdUKiPBoB00JAmgIR0CYRMhvBJqZdX2UKGgGR0BlUwRGtp22aAdN6ANoCEdAmEWCprDZUXV9lChoBkdAZaQzrNW2gGgHTegDaAhHQJhHThOxjax1fZQoaAZHQGk14Tj/+85oB03oA2gIR0CYlT7+1jRVdX2UKGgGR0Bj/JwyZa3aaAdN6ANoCEdAmJY+SB9TgnV9lChoBkdAY9bEv0yxiWgHTegDaAhHQJiabrcCYC11fZQoaAZHQGMdZj6N2kloB03oA2gIR0CYm63cHnlodX2UKGgGR0BlwhiiItUXaAdN6ANoCEdAmKEMCT2WZHV9lChoBkdAYnbihnJ1aGgHTegDaAhHQJijpjZteld1fZQoaAZHQGM6DdYW+GpoB03oA2gIR0CYpmJ66asqdX2UKGgGR0Bp703Kji4saAdN6ANoCEdAmK4dLg4wRHV9lChoBkdAYU7t8eCCjGgHTegDaAhHQJjDECnxaxJ1fZQoaAZHQGYblZHNHH5oB03oA2gIR0CYyaFd9lVcdX2UKGgGR0Bj3xKYiPhiaAdN6ANoCEdAmMoQ5q/M4nV9lChoBkdAZOh101ZTymgHTegDaAhHQJjKxMQEpy91fZQoaAZHQGVSytFKCg9oB03oA2gIR0CYz2W2gFotdX2UKGgGR0BkNhSzgMtsaAdN6ANoCEdAmNCLRSgoPXV9lChoBkdAZDVU6xPfsWgHTegDaAhHQJjRQ5vLowF1fZQoaAZHQGJ0kq2BretoB03oA2gIR0CY0v1DSgGsdX2UKGgGR0BjjB73PAwgaAdN6ANoCEdAmNZwLy+YdHV9lChoBkdAY11F6Rhc7mgHTegDaAhHQJjXVpL26Cl1fZQoaAZHQE3l4FA3T/hoB0ukaAhHQJjbE8bJfY11fZQoaAZHQF7VdpqREF5oB03oA2gIR0CY207fpD/mdX2UKGgGR0BlBxM36yjYaAdN6ANoCEdAmNxt2TxG2HV9lChoBkdAZ/7vE0iyIGgHTegDaAhHQJjhKk0rK/51fZQoaAZHQFK2xsEaESNoB0vaaAhHQJjhXwrlNlB1fZQoaAZHQGF85eRgZ0loB03oA2gIR0CY43XE61b8dX2UKGgGR0Byw9yKekHlaAdNkQFoCEdAmOONI9TxXnV9lChoBkdAZG11L8Jla2gHTegDaAhHQJjl0R3/xUh1fZQoaAZHQGRVyAQQL/loB03oA2gIR0CY7IY2bXpXdX2UKGgGR0BpaC7iADq4aAdN6ANoCEdAmP+ZTqB3A3V9lChoBkdAaAucsDnvD2gHTegDaAhHQJkFstOEdvN1fZQoaAZHQGhbHEETxoZoB03oA2gIR0CZBlVPN3W4dX2UKGgGR0Be9Ut7KJVKaAdN6ANoCEdAmQdL+5vtMXV9lChoBkdAYb2rIYFaCGgHTegDaAhHQJkOwD+zdDZ1fZQoaAZHQGb67jkuHvdoB03oA2gIR0CZD3uTRplCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71131c2750dc1aaa96aa776af30238e4f44b27fba7f1d024b7fc05e53dfe5b29
3
+ size 148042
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x796b7f1c9630>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796b7f1c96c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796b7f1c9750>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796b7f1c97e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x796b7f1c9870>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x796b7f1c9900>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x796b7f1c9990>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796b7f1c9a20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x796b7f1c9ab0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796b7f1c9b40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796b7f1c9bd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x796b7f1c9c60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x796b87c3f640>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701048472282883967,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbErLwUtJW6oINxOm8wWTWeLWs5yaqLuQAAgD8AAIA/wCKUPeGMkbrRgoA6cww6NqJhgznS7pS5AACAPwAAgD8zxao87KmgubAWrrvgF522DnLauu0vyjoAAIA/AACAPwC2Kb1I6Yi6IqK/uwubWTeUnfw6RLXEtgAAgD8AAIA/AIxUvK4nmLrKgXq5vnTLtMTGKTvuoY84AACAPwAAgD9mio29SKOwujx3JTxm6Zg5jFOWu26nkzgAAIA/AACAP00Ikz0C/uc+IoQDvrtusb7M9sc8loYOuwAAAAAAAAAATecoPv0Lpz42bx6+GzKjvuZSPz36dDG+AAAAAAAAAAAaVTK9ex6muk8vqbik0JSz081EOjJfwjcAAIA/AACAPwCSzLyF49O5+FDpOnGNxDWRm606n50JugAAgD8AAIA/zQSVvRTIirqvjyi4gjUcs5bdlbp/H0Q3AACAPwAAgD8AmgU9j5IOuqizibizIG0ynd/8ujVrnzcAAIA/AACAP5qjULzhuvo5QN1qu0KIEDgdZp07CWgZOgAAgD8AAIA/AAAuukivrbocpgq6K31PtvTp7zl8Eh85AACAPwAAgD8ANt68SD+Bul2FMrlvBwW0/JWTOaoeTDgAAIA/AACAP2aXQ73DMXm6jYyCO8/+oDiZv0G7v+cUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEyU9jgAIY6MAWyUS72MAXSUR0CXJt92ovSMdX2UKGgGR0Bkc1q33HrAaAdN6ANoCEdAlyud4eLeh3V9lChoBkdAcEU83dbgTGgHTUkBaAhHQJc04/0NBnl1fZQoaAZHQFLDKdhAnlZoB0uzaAhHQJc2KkCV8kV1fZQoaAZHQGcgYe9zwMJoB03oA2gIR0CXNnAEMb3odX2UKGgGR0Bwoul54W1uaAdNXAJoCEdAlzqumR/3FnV9lChoBkdAai+SKWLP2WgHTegDaAhHQJc+MHZ9NN91fZQoaAZHQEwYUwBYFJRoB0utaAhHQJc+zL6k6911fZQoaAZHQGMGtqxkd3loB03oA2gIR0CXPxfwqiGndX2UKGgGR0BgzpF3IMjNaAdN6ANoCEdAlz9o7q6e5HV9lChoBkdAZVYq6OHWSWgHTegDaAhHQJdF/p/wy7B1fZQoaAZHQFIUPOpsGgVoB0uoaAhHQJdGcXenAIp1fZQoaAZHQGg91e8f3exoB03oA2gIR0CXST0wJw85dX2UKGgGR0BkReJDVpbmaAdN6ANoCEdAl0pA5q/M4nV9lChoBkdAZWfHtF8XvmgHTegDaAhHQJdNm6shgVp1fZQoaAZHQGG0k0aZQYVoB03oA2gIR0CXTehPTG5udX2UKGgGR0BLAUc4o7V8aAdLymgIR0CXUuu9eyAydX2UKGgGR0Blhpu63AmBaAdN6ANoCEdAl1O3sLORknV9lChoBkdAZMlvVmSQo2gHTegDaAhHQJdWD+0gKWt1fZQoaAZHQDU2BshxHXpoB0u6aAhHQJdXAkyDZlF1fZQoaAZHQGMtLq+rU9ZoB03oA2gIR0CXWKawljVhdX2UKGgGR0BnOsKG+K0laAdN6ANoCEdAl1rrhaTwD3V9lChoBkdAZlVV6u4gBGgHTegDaAhHQJdrzxOLzf91fZQoaAZHQGSGFGXokiVoB03oA2gIR0CXbfzTWoWIdX2UKGgGR0Bg/XSF49owaAdN6ANoCEdAl3Wr/ffoBHV9lChoBkdAYTGvAXVLBmgHTegDaAhHQJd55He7+UB1fZQoaAZHQFAEt0mtyPxoB0vGaAhHQJd6TsolUqB1fZQoaAZHQGKUxLK3d9FoB03oA2gIR0CXevp2ECeVdX2UKGgGR0BkSGSKWLP2aAdN6ANoCEdAl3tbGBFuvXV9lChoBkdAZwBpMYdhiWgHTegDaAhHQJfNKyGBWgh1fZQoaAZHQGJdp8WsRxtoB03oA2gIR0CXzZvqC6H1dX2UKGgGR0BwU/LgXMyKaAdNcgJoCEdAl88R0EHMU3V9lChoBkdAX8dGYrrgO2gHTegDaAhHQJfRdFLFn7J1fZQoaAZHQGPiW+XZ5A1oB03oA2gIR0CX1UQizLOidX2UKGgGR0BjoIXwb2lEaAdN6ANoCEdAl9pIZdfLLnV9lChoBkdAZPs0iQkonmgHTegDaAhHQJfbGUUwi7l1fZQoaAZHQGHnXKKYRd1oB03oA2gIR0CX3VLX+VC5dX2UKGgGR0Be4BzV+Zw5aAdN6ANoCEdAl94sefZmI3V9lChoBkdAYeHDTBqKxmgHTegDaAhHQJffukhzNll1fZQoaAZHQHIfoHgP3BZoB02IAWgIR0CX40RsdkrgdX2UKGgGR0BmAlorWiDeaAdN6ANoCEdAl/QUpZwGW3V9lChoBkdAZ8781n/T9mgHTegDaAhHQJf7yFRHf/F1fZQoaAZHQGcA/K6nR9hoB03oA2gIR0CYAHbp/wy7dX2UKGgGR0BknRWV/tpmaAdN6ANoCEdAmADjhky1u3V9lChoBkdAYhBkxyn1nWgHTegDaAhHQJgBg8xKxs51fZQoaAZHQGJbkLQXyiFoB03oA2gIR0CYAeK3uuzQdX2UKGgGR0Bxn8Yj0L+haAdNLwFoCEdAmAcZMQEpzHV9lChoBkdAaTBSncclxGgHTegDaAhHQJgIt8NQTEl1fZQoaAZHQGNndTgl4TtoB03oA2gIR0CYCSWFvhqCdX2UKGgGR0BuHgwPAfuDaAdN0wJoCEdAmAwEpd8iOnV9lChoBkdAYkRYAbQ1JmgHTegDaAhHQJgM4GcFyJd1fZQoaAZHQGS8KRMewLVoB03oA2gIR0CYEG8aXKKYdX2UKGgGR0BMwjDbah6CaAdLtmgIR0CYEYm5UcXFdX2UKGgGR0BprlALRa5gaAdN6ANoCEdAmBWFcMVk+XV9lChoBkdAYkM5CngpB2gHTegDaAhHQJgWTlXA/LV1fZQoaAZHQGjUJYDDCP9oB03oA2gIR0CYGLSCOFQEdX2UKGgGR0BiA3C9AX2vaAdN6ANoCEdAmBtJxR2r4nV9lChoBkdAYv3ZyuIRAmgHTegDaAhHQJgeAjLSuyN1fZQoaAZHQHJBYLw4KhNoB02IAmgIR0CYIdRD1GsndX2UKGgGR0BmSV/axoqTaAdN6ANoCEdAmDThKxs2vXV9lChoBkdAZvhQ79ycTmgHTegDaAhHQJg7cCRwIdF1fZQoaAZHQGjKXn6l+E1oB03oA2gIR0CYPCmKqGUOdX2UKGgGR0BkzhiLEUCaaAdN6ANoCEdAmD0vRVp9JHV9lChoBkdAcBq+JgsshGgHTZUCaAhHQJhDkGVzIWB1fZQoaAZHQG27TdUKiPBoB00JAmgIR0CYRMhvBJqZdX2UKGgGR0BlUwRGtp22aAdN6ANoCEdAmEWCprDZUXV9lChoBkdAZaQzrNW2gGgHTegDaAhHQJhHThOxjax1fZQoaAZHQGk14Tj/+85oB03oA2gIR0CYlT7+1jRVdX2UKGgGR0Bj/JwyZa3aaAdN6ANoCEdAmJY+SB9TgnV9lChoBkdAY9bEv0yxiWgHTegDaAhHQJiabrcCYC11fZQoaAZHQGMdZj6N2kloB03oA2gIR0CYm63cHnlodX2UKGgGR0BlwhiiItUXaAdN6ANoCEdAmKEMCT2WZHV9lChoBkdAYnbihnJ1aGgHTegDaAhHQJijpjZteld1fZQoaAZHQGM6DdYW+GpoB03oA2gIR0CYpmJ66asqdX2UKGgGR0Bp703Kji4saAdN6ANoCEdAmK4dLg4wRHV9lChoBkdAYU7t8eCCjGgHTegDaAhHQJjDECnxaxJ1fZQoaAZHQGYblZHNHH5oB03oA2gIR0CYyaFd9lVcdX2UKGgGR0Bj3xKYiPhiaAdN6ANoCEdAmMoQ5q/M4nV9lChoBkdAZOh101ZTymgHTegDaAhHQJjKxMQEpy91fZQoaAZHQGVSytFKCg9oB03oA2gIR0CYz2W2gFotdX2UKGgGR0BkNhSzgMtsaAdN6ANoCEdAmNCLRSgoPXV9lChoBkdAZDVU6xPfsWgHTegDaAhHQJjRQ5vLowF1fZQoaAZHQGJ0kq2BretoB03oA2gIR0CY0v1DSgGsdX2UKGgGR0BjjB73PAwgaAdN6ANoCEdAmNZwLy+YdHV9lChoBkdAY11F6Rhc7mgHTegDaAhHQJjXVpL26Cl1fZQoaAZHQE3l4FA3T/hoB0ukaAhHQJjbE8bJfY11fZQoaAZHQF7VdpqREF5oB03oA2gIR0CY207fpD/mdX2UKGgGR0BlBxM36yjYaAdN6ANoCEdAmNxt2TxG2HV9lChoBkdAZ/7vE0iyIGgHTegDaAhHQJjhKk0rK/51fZQoaAZHQFK2xsEaESNoB0vaaAhHQJjhXwrlNlB1fZQoaAZHQGF85eRgZ0loB03oA2gIR0CY43XE61b8dX2UKGgGR0Byw9yKekHlaAdNkQFoCEdAmOONI9TxXnV9lChoBkdAZG11L8Jla2gHTegDaAhHQJjl0R3/xUh1fZQoaAZHQGRVyAQQL/loB03oA2gIR0CY7IY2bXpXdX2UKGgGR0BpaC7iADq4aAdN6ANoCEdAmP+ZTqB3A3V9lChoBkdAaAucsDnvD2gHTegDaAhHQJkFstOEdvN1fZQoaAZHQGhbHEETxoZoB03oA2gIR0CZBlVPN3W4dX2UKGgGR0Be9Ut7KJVKaAdN6ANoCEdAmQdL+5vtMXV9lChoBkdAYb2rIYFaCGgHTegDaAhHQJkOwD+zdDZ1fZQoaAZHQGb67jkuHvdoB03oA2gIR0CZD3uTRplCdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 2048,
81
+ "gamma": 0.998,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 8,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e25d6de68239ac29f83b7de56af3427493d15f818aedda7d58669b1df3148ef
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b3574fbc0738ef3b061534864a6fbc4ef65a03003856ae96328e9ebb447b084
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (184 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.20244599999995, "std_reward": 9.785981591672028, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-27T02:02:48.549758"}