Anand Vardhan First Commit - PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.20 +/- 9.79
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x796b7f1c9630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796b7f1c96c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796b7f1c9750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796b7f1c97e0>", "_build": "<function ActorCriticPolicy._build at 0x796b7f1c9870>", "forward": "<function ActorCriticPolicy.forward at 0x796b7f1c9900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x796b7f1c9990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796b7f1c9a20>", "_predict": "<function ActorCriticPolicy._predict at 0x796b7f1c9ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796b7f1c9b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796b7f1c9bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x796b7f1c9c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x796b87c3f640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701048472282883967, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbErLwUtJW6oINxOm8wWTWeLWs5yaqLuQAAgD8AAIA/wCKUPeGMkbrRgoA6cww6NqJhgznS7pS5AACAPwAAgD8zxao87KmgubAWrrvgF522DnLauu0vyjoAAIA/AACAPwC2Kb1I6Yi6IqK/uwubWTeUnfw6RLXEtgAAgD8AAIA/AIxUvK4nmLrKgXq5vnTLtMTGKTvuoY84AACAPwAAgD9mio29SKOwujx3JTxm6Zg5jFOWu26nkzgAAIA/AACAP00Ikz0C/uc+IoQDvrtusb7M9sc8loYOuwAAAAAAAAAATecoPv0Lpz42bx6+GzKjvuZSPz36dDG+AAAAAAAAAAAaVTK9ex6muk8vqbik0JSz081EOjJfwjcAAIA/AACAPwCSzLyF49O5+FDpOnGNxDWRm606n50JugAAgD8AAIA/zQSVvRTIirqvjyi4gjUcs5bdlbp/H0Q3AACAPwAAgD8AmgU9j5IOuqizibizIG0ynd/8ujVrnzcAAIA/AACAP5qjULzhuvo5QN1qu0KIEDgdZp07CWgZOgAAgD8AAIA/AAAuukivrbocpgq6K31PtvTp7zl8Eh85AACAPwAAgD8ANt68SD+Bul2FMrlvBwW0/JWTOaoeTDgAAIA/AACAP2aXQ73DMXm6jYyCO8/+oDiZv0G7v+cUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEyU9jgAIY6MAWyUS72MAXSUR0CXJt92ovSMdX2UKGgGR0Bkc1q33HrAaAdN6ANoCEdAlyud4eLeh3V9lChoBkdAcEU83dbgTGgHTUkBaAhHQJc04/0NBnl1fZQoaAZHQFLDKdhAnlZoB0uzaAhHQJc2KkCV8kV1fZQoaAZHQGcgYe9zwMJoB03oA2gIR0CXNnAEMb3odX2UKGgGR0Bwoul54W1uaAdNXAJoCEdAlzqumR/3FnV9lChoBkdAai+SKWLP2WgHTegDaAhHQJc+MHZ9NN91fZQoaAZHQEwYUwBYFJRoB0utaAhHQJc+zL6k6911fZQoaAZHQGMGtqxkd3loB03oA2gIR0CXPxfwqiGndX2UKGgGR0BgzpF3IMjNaAdN6ANoCEdAlz9o7q6e5HV9lChoBkdAZVYq6OHWSWgHTegDaAhHQJdF/p/wy7B1fZQoaAZHQFIUPOpsGgVoB0uoaAhHQJdGcXenAIp1fZQoaAZHQGg91e8f3exoB03oA2gIR0CXST0wJw85dX2UKGgGR0BkReJDVpbmaAdN6ANoCEdAl0pA5q/M4nV9lChoBkdAZWfHtF8XvmgHTegDaAhHQJdNm6shgVp1fZQoaAZHQGG0k0aZQYVoB03oA2gIR0CXTehPTG5udX2UKGgGR0BLAUc4o7V8aAdLymgIR0CXUuu9eyAydX2UKGgGR0Blhpu63AmBaAdN6ANoCEdAl1O3sLORknV9lChoBkdAZMlvVmSQo2gHTegDaAhHQJdWD+0gKWt1fZQoaAZHQDU2BshxHXpoB0u6aAhHQJdXAkyDZlF1fZQoaAZHQGMtLq+rU9ZoB03oA2gIR0CXWKawljVhdX2UKGgGR0BnOsKG+K0laAdN6ANoCEdAl1rrhaTwD3V9lChoBkdAZlVV6u4gBGgHTegDaAhHQJdrzxOLzf91fZQoaAZHQGSGFGXokiVoB03oA2gIR0CXbfzTWoWIdX2UKGgGR0Bg/XSF49owaAdN6ANoCEdAl3Wr/ffoBHV9lChoBkdAYTGvAXVLBmgHTegDaAhHQJd55He7+UB1fZQoaAZHQFAEt0mtyPxoB0vGaAhHQJd6TsolUqB1fZQoaAZHQGKUxLK3d9FoB03oA2gIR0CXevp2ECeVdX2UKGgGR0BkSGSKWLP2aAdN6ANoCEdAl3tbGBFuvXV9lChoBkdAZwBpMYdhiWgHTegDaAhHQJfNKyGBWgh1fZQoaAZHQGJdp8WsRxtoB03oA2gIR0CXzZvqC6H1dX2UKGgGR0BwU/LgXMyKaAdNcgJoCEdAl88R0EHMU3V9lChoBkdAX8dGYrrgO2gHTegDaAhHQJfRdFLFn7J1fZQoaAZHQGPiW+XZ5A1oB03oA2gIR0CX1UQizLOidX2UKGgGR0BjoIXwb2lEaAdN6ANoCEdAl9pIZdfLLnV9lChoBkdAZPs0iQkonmgHTegDaAhHQJfbGUUwi7l1fZQoaAZHQGHnXKKYRd1oB03oA2gIR0CX3VLX+VC5dX2UKGgGR0Be4BzV+Zw5aAdN6ANoCEdAl94sefZmI3V9lChoBkdAYeHDTBqKxmgHTegDaAhHQJffukhzNll1fZQoaAZHQHIfoHgP3BZoB02IAWgIR0CX40RsdkrgdX2UKGgGR0BmAlorWiDeaAdN6ANoCEdAl/QUpZwGW3V9lChoBkdAZ8781n/T9mgHTegDaAhHQJf7yFRHf/F1fZQoaAZHQGcA/K6nR9hoB03oA2gIR0CYAHbp/wy7dX2UKGgGR0BknRWV/tpmaAdN6ANoCEdAmADjhky1u3V9lChoBkdAYhBkxyn1nWgHTegDaAhHQJgBg8xKxs51fZQoaAZHQGJbkLQXyiFoB03oA2gIR0CYAeK3uuzQdX2UKGgGR0Bxn8Yj0L+haAdNLwFoCEdAmAcZMQEpzHV9lChoBkdAaTBSncclxGgHTegDaAhHQJgIt8NQTEl1fZQoaAZHQGNndTgl4TtoB03oA2gIR0CYCSWFvhqCdX2UKGgGR0BuHgwPAfuDaAdN0wJoCEdAmAwEpd8iOnV9lChoBkdAYkRYAbQ1JmgHTegDaAhHQJgM4GcFyJd1fZQoaAZHQGS8KRMewLVoB03oA2gIR0CYEG8aXKKYdX2UKGgGR0BMwjDbah6CaAdLtmgIR0CYEYm5UcXFdX2UKGgGR0BprlALRa5gaAdN6ANoCEdAmBWFcMVk+XV9lChoBkdAYkM5CngpB2gHTegDaAhHQJgWTlXA/LV1fZQoaAZHQGjUJYDDCP9oB03oA2gIR0CYGLSCOFQEdX2UKGgGR0BiA3C9AX2vaAdN6ANoCEdAmBtJxR2r4nV9lChoBkdAYv3ZyuIRAmgHTegDaAhHQJgeAjLSuyN1fZQoaAZHQHJBYLw4KhNoB02IAmgIR0CYIdRD1GsndX2UKGgGR0BmSV/axoqTaAdN6ANoCEdAmDThKxs2vXV9lChoBkdAZvhQ79ycTmgHTegDaAhHQJg7cCRwIdF1fZQoaAZHQGjKXn6l+E1oB03oA2gIR0CYPCmKqGUOdX2UKGgGR0BkzhiLEUCaaAdN6ANoCEdAmD0vRVp9JHV9lChoBkdAcBq+JgsshGgHTZUCaAhHQJhDkGVzIWB1fZQoaAZHQG27TdUKiPBoB00JAmgIR0CYRMhvBJqZdX2UKGgGR0BlUwRGtp22aAdN6ANoCEdAmEWCprDZUXV9lChoBkdAZaQzrNW2gGgHTegDaAhHQJhHThOxjax1fZQoaAZHQGk14Tj/+85oB03oA2gIR0CYlT7+1jRVdX2UKGgGR0Bj/JwyZa3aaAdN6ANoCEdAmJY+SB9TgnV9lChoBkdAY9bEv0yxiWgHTegDaAhHQJiabrcCYC11fZQoaAZHQGMdZj6N2kloB03oA2gIR0CYm63cHnlodX2UKGgGR0BlwhiiItUXaAdN6ANoCEdAmKEMCT2WZHV9lChoBkdAYnbihnJ1aGgHTegDaAhHQJijpjZteld1fZQoaAZHQGM6DdYW+GpoB03oA2gIR0CYpmJ66asqdX2UKGgGR0Bp703Kji4saAdN6ANoCEdAmK4dLg4wRHV9lChoBkdAYU7t8eCCjGgHTegDaAhHQJjDECnxaxJ1fZQoaAZHQGYblZHNHH5oB03oA2gIR0CYyaFd9lVcdX2UKGgGR0Bj3xKYiPhiaAdN6ANoCEdAmMoQ5q/M4nV9lChoBkdAZOh101ZTymgHTegDaAhHQJjKxMQEpy91fZQoaAZHQGVSytFKCg9oB03oA2gIR0CYz2W2gFotdX2UKGgGR0BkNhSzgMtsaAdN6ANoCEdAmNCLRSgoPXV9lChoBkdAZDVU6xPfsWgHTegDaAhHQJjRQ5vLowF1fZQoaAZHQGJ0kq2BretoB03oA2gIR0CY0v1DSgGsdX2UKGgGR0BjjB73PAwgaAdN6ANoCEdAmNZwLy+YdHV9lChoBkdAY11F6Rhc7mgHTegDaAhHQJjXVpL26Cl1fZQoaAZHQE3l4FA3T/hoB0ukaAhHQJjbE8bJfY11fZQoaAZHQF7VdpqREF5oB03oA2gIR0CY207fpD/mdX2UKGgGR0BlBxM36yjYaAdN6ANoCEdAmNxt2TxG2HV9lChoBkdAZ/7vE0iyIGgHTegDaAhHQJjhKk0rK/51fZQoaAZHQFK2xsEaESNoB0vaaAhHQJjhXwrlNlB1fZQoaAZHQGF85eRgZ0loB03oA2gIR0CY43XE61b8dX2UKGgGR0Byw9yKekHlaAdNkQFoCEdAmOONI9TxXnV9lChoBkdAZG11L8Jla2gHTegDaAhHQJjl0R3/xUh1fZQoaAZHQGRVyAQQL/loB03oA2gIR0CY7IY2bXpXdX2UKGgGR0BpaC7iADq4aAdN6ANoCEdAmP+ZTqB3A3V9lChoBkdAaAucsDnvD2gHTegDaAhHQJkFstOEdvN1fZQoaAZHQGhbHEETxoZoB03oA2gIR0CZBlVPN3W4dX2UKGgGR0Be9Ut7KJVKaAdN6ANoCEdAmQdL+5vtMXV9lChoBkdAYb2rIYFaCGgHTegDaAhHQJkOwD+zdDZ1fZQoaAZHQGb67jkuHvdoB03oA2gIR0CZD3uTRplCdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71131c2750dc1aaa96aa776af30238e4f44b27fba7f1d024b7fc05e53dfe5b29
|
3 |
+
size 148042
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x796b7f1c9630>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x796b7f1c96c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x796b7f1c9750>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x796b7f1c97e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x796b7f1c9870>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x796b7f1c9900>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x796b7f1c9990>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x796b7f1c9a20>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x796b7f1c9ab0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x796b7f1c9b40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x796b7f1c9bd0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x796b7f1c9c60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x796b87c3f640>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1701048472282883967,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbErLwUtJW6oINxOm8wWTWeLWs5yaqLuQAAgD8AAIA/wCKUPeGMkbrRgoA6cww6NqJhgznS7pS5AACAPwAAgD8zxao87KmgubAWrrvgF522DnLauu0vyjoAAIA/AACAPwC2Kb1I6Yi6IqK/uwubWTeUnfw6RLXEtgAAgD8AAIA/AIxUvK4nmLrKgXq5vnTLtMTGKTvuoY84AACAPwAAgD9mio29SKOwujx3JTxm6Zg5jFOWu26nkzgAAIA/AACAP00Ikz0C/uc+IoQDvrtusb7M9sc8loYOuwAAAAAAAAAATecoPv0Lpz42bx6+GzKjvuZSPz36dDG+AAAAAAAAAAAaVTK9ex6muk8vqbik0JSz081EOjJfwjcAAIA/AACAPwCSzLyF49O5+FDpOnGNxDWRm606n50JugAAgD8AAIA/zQSVvRTIirqvjyi4gjUcs5bdlbp/H0Q3AACAPwAAgD8AmgU9j5IOuqizibizIG0ynd/8ujVrnzcAAIA/AACAP5qjULzhuvo5QN1qu0KIEDgdZp07CWgZOgAAgD8AAIA/AAAuukivrbocpgq6K31PtvTp7zl8Eh85AACAPwAAgD8ANt68SD+Bul2FMrlvBwW0/JWTOaoeTDgAAIA/AACAP2aXQ73DMXm6jYyCO8/+oDiZv0G7v+cUugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEyU9jgAIY6MAWyUS72MAXSUR0CXJt92ovSMdX2UKGgGR0Bkc1q33HrAaAdN6ANoCEdAlyud4eLeh3V9lChoBkdAcEU83dbgTGgHTUkBaAhHQJc04/0NBnl1fZQoaAZHQFLDKdhAnlZoB0uzaAhHQJc2KkCV8kV1fZQoaAZHQGcgYe9zwMJoB03oA2gIR0CXNnAEMb3odX2UKGgGR0Bwoul54W1uaAdNXAJoCEdAlzqumR/3FnV9lChoBkdAai+SKWLP2WgHTegDaAhHQJc+MHZ9NN91fZQoaAZHQEwYUwBYFJRoB0utaAhHQJc+zL6k6911fZQoaAZHQGMGtqxkd3loB03oA2gIR0CXPxfwqiGndX2UKGgGR0BgzpF3IMjNaAdN6ANoCEdAlz9o7q6e5HV9lChoBkdAZVYq6OHWSWgHTegDaAhHQJdF/p/wy7B1fZQoaAZHQFIUPOpsGgVoB0uoaAhHQJdGcXenAIp1fZQoaAZHQGg91e8f3exoB03oA2gIR0CXST0wJw85dX2UKGgGR0BkReJDVpbmaAdN6ANoCEdAl0pA5q/M4nV9lChoBkdAZWfHtF8XvmgHTegDaAhHQJdNm6shgVp1fZQoaAZHQGG0k0aZQYVoB03oA2gIR0CXTehPTG5udX2UKGgGR0BLAUc4o7V8aAdLymgIR0CXUuu9eyAydX2UKGgGR0Blhpu63AmBaAdN6ANoCEdAl1O3sLORknV9lChoBkdAZMlvVmSQo2gHTegDaAhHQJdWD+0gKWt1fZQoaAZHQDU2BshxHXpoB0u6aAhHQJdXAkyDZlF1fZQoaAZHQGMtLq+rU9ZoB03oA2gIR0CXWKawljVhdX2UKGgGR0BnOsKG+K0laAdN6ANoCEdAl1rrhaTwD3V9lChoBkdAZlVV6u4gBGgHTegDaAhHQJdrzxOLzf91fZQoaAZHQGSGFGXokiVoB03oA2gIR0CXbfzTWoWIdX2UKGgGR0Bg/XSF49owaAdN6ANoCEdAl3Wr/ffoBHV9lChoBkdAYTGvAXVLBmgHTegDaAhHQJd55He7+UB1fZQoaAZHQFAEt0mtyPxoB0vGaAhHQJd6TsolUqB1fZQoaAZHQGKUxLK3d9FoB03oA2gIR0CXevp2ECeVdX2UKGgGR0BkSGSKWLP2aAdN6ANoCEdAl3tbGBFuvXV9lChoBkdAZwBpMYdhiWgHTegDaAhHQJfNKyGBWgh1fZQoaAZHQGJdp8WsRxtoB03oA2gIR0CXzZvqC6H1dX2UKGgGR0BwU/LgXMyKaAdNcgJoCEdAl88R0EHMU3V9lChoBkdAX8dGYrrgO2gHTegDaAhHQJfRdFLFn7J1fZQoaAZHQGPiW+XZ5A1oB03oA2gIR0CX1UQizLOidX2UKGgGR0BjoIXwb2lEaAdN6ANoCEdAl9pIZdfLLnV9lChoBkdAZPs0iQkonmgHTegDaAhHQJfbGUUwi7l1fZQoaAZHQGHnXKKYRd1oB03oA2gIR0CX3VLX+VC5dX2UKGgGR0Be4BzV+Zw5aAdN6ANoCEdAl94sefZmI3V9lChoBkdAYeHDTBqKxmgHTegDaAhHQJffukhzNll1fZQoaAZHQHIfoHgP3BZoB02IAWgIR0CX40RsdkrgdX2UKGgGR0BmAlorWiDeaAdN6ANoCEdAl/QUpZwGW3V9lChoBkdAZ8781n/T9mgHTegDaAhHQJf7yFRHf/F1fZQoaAZHQGcA/K6nR9hoB03oA2gIR0CYAHbp/wy7dX2UKGgGR0BknRWV/tpmaAdN6ANoCEdAmADjhky1u3V9lChoBkdAYhBkxyn1nWgHTegDaAhHQJgBg8xKxs51fZQoaAZHQGJbkLQXyiFoB03oA2gIR0CYAeK3uuzQdX2UKGgGR0Bxn8Yj0L+haAdNLwFoCEdAmAcZMQEpzHV9lChoBkdAaTBSncclxGgHTegDaAhHQJgIt8NQTEl1fZQoaAZHQGNndTgl4TtoB03oA2gIR0CYCSWFvhqCdX2UKGgGR0BuHgwPAfuDaAdN0wJoCEdAmAwEpd8iOnV9lChoBkdAYkRYAbQ1JmgHTegDaAhHQJgM4GcFyJd1fZQoaAZHQGS8KRMewLVoB03oA2gIR0CYEG8aXKKYdX2UKGgGR0BMwjDbah6CaAdLtmgIR0CYEYm5UcXFdX2UKGgGR0BprlALRa5gaAdN6ANoCEdAmBWFcMVk+XV9lChoBkdAYkM5CngpB2gHTegDaAhHQJgWTlXA/LV1fZQoaAZHQGjUJYDDCP9oB03oA2gIR0CYGLSCOFQEdX2UKGgGR0BiA3C9AX2vaAdN6ANoCEdAmBtJxR2r4nV9lChoBkdAYv3ZyuIRAmgHTegDaAhHQJgeAjLSuyN1fZQoaAZHQHJBYLw4KhNoB02IAmgIR0CYIdRD1GsndX2UKGgGR0BmSV/axoqTaAdN6ANoCEdAmDThKxs2vXV9lChoBkdAZvhQ79ycTmgHTegDaAhHQJg7cCRwIdF1fZQoaAZHQGjKXn6l+E1oB03oA2gIR0CYPCmKqGUOdX2UKGgGR0BkzhiLEUCaaAdN6ANoCEdAmD0vRVp9JHV9lChoBkdAcBq+JgsshGgHTZUCaAhHQJhDkGVzIWB1fZQoaAZHQG27TdUKiPBoB00JAmgIR0CYRMhvBJqZdX2UKGgGR0BlUwRGtp22aAdN6ANoCEdAmEWCprDZUXV9lChoBkdAZaQzrNW2gGgHTegDaAhHQJhHThOxjax1fZQoaAZHQGk14Tj/+85oB03oA2gIR0CYlT7+1jRVdX2UKGgGR0Bj/JwyZa3aaAdN6ANoCEdAmJY+SB9TgnV9lChoBkdAY9bEv0yxiWgHTegDaAhHQJiabrcCYC11fZQoaAZHQGMdZj6N2kloB03oA2gIR0CYm63cHnlodX2UKGgGR0BlwhiiItUXaAdN6ANoCEdAmKEMCT2WZHV9lChoBkdAYnbihnJ1aGgHTegDaAhHQJijpjZteld1fZQoaAZHQGM6DdYW+GpoB03oA2gIR0CYpmJ66asqdX2UKGgGR0Bp703Kji4saAdN6ANoCEdAmK4dLg4wRHV9lChoBkdAYU7t8eCCjGgHTegDaAhHQJjDECnxaxJ1fZQoaAZHQGYblZHNHH5oB03oA2gIR0CYyaFd9lVcdX2UKGgGR0Bj3xKYiPhiaAdN6ANoCEdAmMoQ5q/M4nV9lChoBkdAZOh101ZTymgHTegDaAhHQJjKxMQEpy91fZQoaAZHQGVSytFKCg9oB03oA2gIR0CYz2W2gFotdX2UKGgGR0BkNhSzgMtsaAdN6ANoCEdAmNCLRSgoPXV9lChoBkdAZDVU6xPfsWgHTegDaAhHQJjRQ5vLowF1fZQoaAZHQGJ0kq2BretoB03oA2gIR0CY0v1DSgGsdX2UKGgGR0BjjB73PAwgaAdN6ANoCEdAmNZwLy+YdHV9lChoBkdAY11F6Rhc7mgHTegDaAhHQJjXVpL26Cl1fZQoaAZHQE3l4FA3T/hoB0ukaAhHQJjbE8bJfY11fZQoaAZHQF7VdpqREF5oB03oA2gIR0CY207fpD/mdX2UKGgGR0BlBxM36yjYaAdN6ANoCEdAmNxt2TxG2HV9lChoBkdAZ/7vE0iyIGgHTegDaAhHQJjhKk0rK/51fZQoaAZHQFK2xsEaESNoB0vaaAhHQJjhXwrlNlB1fZQoaAZHQGF85eRgZ0loB03oA2gIR0CY43XE61b8dX2UKGgGR0Byw9yKekHlaAdNkQFoCEdAmOONI9TxXnV9lChoBkdAZG11L8Jla2gHTegDaAhHQJjl0R3/xUh1fZQoaAZHQGRVyAQQL/loB03oA2gIR0CY7IY2bXpXdX2UKGgGR0BpaC7iADq4aAdN6ANoCEdAmP+ZTqB3A3V9lChoBkdAaAucsDnvD2gHTegDaAhHQJkFstOEdvN1fZQoaAZHQGhbHEETxoZoB03oA2gIR0CZBlVPN3W4dX2UKGgGR0Be9Ut7KJVKaAdN6ANoCEdAmQdL+5vtMXV9lChoBkdAYb2rIYFaCGgHTegDaAhHQJkOwD+zdDZ1fZQoaAZHQGb67jkuHvdoB03oA2gIR0CZD3uTRplCdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.998,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 8,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e25d6de68239ac29f83b7de56af3427493d15f818aedda7d58669b1df3148ef
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b3574fbc0738ef3b061534864a6fbc4ef65a03003856ae96328e9ebb447b084
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (184 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.20244599999995, "std_reward": 9.785981591672028, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-27T02:02:48.549758"}
|