File size: 2,032 Bytes
2afe21b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv2-large-uncased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv2-finetuned-cord
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv2-finetuned-cord

This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4287
- Precision: 0.5421
- Recall: 0.4754
- F1: 0.5066
- Accuracy: 0.9272

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 135  | 0.3706          | 0.4855    | 0.4816 | 0.4835 | 0.9190   |
| No log        | 2.0   | 270  | 0.3198          | 0.5887    | 0.5102 | 0.5467 | 0.9308   |
| No log        | 3.0   | 405  | 0.3602          | 0.5237    | 0.4529 | 0.4857 | 0.9238   |
| 0.323         | 4.0   | 540  | 0.3866          | 0.5251    | 0.4508 | 0.4851 | 0.9250   |
| 0.323         | 5.0   | 675  | 0.4287          | 0.5421    | 0.4754 | 0.5066 | 0.9272   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1