vantaa32 commited on
Commit
79da18c
·
verified ·
1 Parent(s): 66d192a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +103 -23
README.md CHANGED
@@ -3,29 +3,10 @@ base_model: meta-llama/Llama-2-7b-hf
3
  library_name: peft
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- This is a LLaMA-2-7B model fine-tuned using FourierFT on alpaca dataset.
9
 
10
- Hyperparameters are set as follows:
11
-
12
- ```
13
- python fourierft-alpaca.py \
14
- --warmup_ratio 0.06 \
15
- --num_train_epochs 2 \
16
- --seed 0 \
17
- --per_device_train_batch_size 2 \
18
- --gradient_accumulation_steps 32 \
19
- --output_dir './results' \
20
- --eval_strategy "epoch" \
21
- --mixed_precision "bf16" \
22
- --lr_scheduler_type "linear" \
23
- --learning_rate 3e-4 \
24
- --logging_steps 10 \
25
- --report_to "none" \
26
- --fourier_scale 512 \
27
- --fourier_n_frequency 10000
28
- ```
29
 
30
 
31
  <!-- Provide a quick summary of what the model is/does. -->
@@ -100,6 +81,7 @@ Use the code below to get started with the model.
100
 
101
  ### Training Data
102
 
 
103
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
104
 
105
  [More Information Needed]
@@ -115,8 +97,25 @@ Use the code below to get started with the model.
115
 
116
  #### Training Hyperparameters
117
 
118
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
  #### Speeds, Sizes, Times [optional]
121
 
122
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
@@ -124,7 +123,88 @@ Use the code below to get started with the model.
124
  [More Information Needed]
125
 
126
  ## Evaluation
127
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  <!-- This section describes the evaluation protocols and provides the results. -->
129
 
130
  ### Testing Data, Factors & Metrics
 
3
  library_name: peft
4
  ---
5
 
6
+ # Model Card for vantaa32/llama-2-7b-fourierft-alpaca
7
 
8
+ This is a LLaMA-2-7B model fine-tuned using FourierFT on alpaca dataset. Only K and V projections are set to be trainable.
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
 
81
 
82
  ### Training Data
83
 
84
+ Alpaca
85
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
86
 
87
  [More Information Needed]
 
97
 
98
  #### Training Hyperparameters
99
 
100
+ - **Training regime:** bf16 mixed precision <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
101
 
102
+ ```
103
+ python fourierft-alpaca.py \
104
+ --warmup_ratio 0.06 \
105
+ --num_train_epochs 2 \
106
+ --seed 0 \
107
+ --per_device_train_batch_size 2 \
108
+ --gradient_accumulation_steps 32 \
109
+ --output_dir './results' \
110
+ --eval_strategy "epoch" \
111
+ --mixed_precision "bf16" \
112
+ --lr_scheduler_type "linear" \
113
+ --learning_rate 3e-4 \
114
+ --logging_steps 10 \
115
+ --report_to "none" \
116
+ --fourier_scale 512 \
117
+ --fourier_n_frequency 10000
118
+ ```
119
  #### Speeds, Sizes, Times [optional]
120
 
121
  <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
 
123
  [More Information Needed]
124
 
125
  ## Evaluation
126
+ MMLU Benchmark: 0.455
127
+ ```
128
+ Average accuracy 0.280 - abstract_algebra
129
+ Average accuracy 0.474 - anatomy
130
+ Average accuracy 0.434 - astronomy
131
+ Average accuracy 0.490 - business_ethics
132
+ Average accuracy 0.491 - clinical_knowledge
133
+ Average accuracy 0.438 - college_biology
134
+ Average accuracy 0.330 - college_chemistry
135
+ Average accuracy 0.400 - college_computer_science
136
+ Average accuracy 0.350 - college_mathematics
137
+ Average accuracy 0.445 - college_medicine
138
+ Average accuracy 0.157 - college_physics
139
+ Average accuracy 0.550 - computer_security
140
+ Average accuracy 0.426 - conceptual_physics
141
+ Average accuracy 0.254 - econometrics
142
+ Average accuracy 0.503 - electrical_engineering
143
+ Average accuracy 0.312 - elementary_mathematics
144
+ Average accuracy 0.262 - formal_logic
145
+ Average accuracy 0.320 - global_facts
146
+ Average accuracy 0.500 - high_school_biology
147
+ Average accuracy 0.330 - high_school_chemistry
148
+ Average accuracy 0.420 - high_school_computer_science
149
+ Average accuracy 0.588 - high_school_european_history
150
+ Average accuracy 0.540 - high_school_geography
151
+ Average accuracy 0.663 - high_school_government_and_politics
152
+ Average accuracy 0.441 - high_school_macroeconomics
153
+ Average accuracy 0.326 - high_school_mathematics
154
+ Average accuracy 0.429 - high_school_microeconomics
155
+ Average accuracy 0.258 - high_school_physics
156
+ Average accuracy 0.622 - high_school_psychology
157
+ Average accuracy 0.306 - high_school_statistics
158
+ Average accuracy 0.588 - high_school_us_history
159
+ Average accuracy 0.624 - high_school_world_history
160
+ Average accuracy 0.570 - human_aging
161
+ Average accuracy 0.481 - human_sexuality
162
+ Average accuracy 0.628 - international_law
163
+ Average accuracy 0.528 - jurisprudence
164
+ Average accuracy 0.479 - logical_fallacies
165
+ Average accuracy 0.402 - machine_learning
166
+ Average accuracy 0.592 - management
167
+ Average accuracy 0.641 - marketing
168
+ Average accuracy 0.520 - medical_genetics
169
+ Average accuracy 0.621 - miscellaneous
170
+ Average accuracy 0.474 - moral_disputes
171
+ Average accuracy 0.241 - moral_scenarios
172
+ Average accuracy 0.484 - nutrition
173
+ Average accuracy 0.579 - philosophy
174
+ Average accuracy 0.485 - prehistory
175
+ Average accuracy 0.372 - professional_accounting
176
+ Average accuracy 0.345 - professional_law
177
+ Average accuracy 0.537 - professional_medicine
178
+ Average accuracy 0.428 - professional_psychology
179
+ Average accuracy 0.545 - public_relations
180
+ Average accuracy 0.514 - security_studies
181
+ Average accuracy 0.632 - sociology
182
+ Average accuracy 0.710 - us_foreign_policy
183
+ Average accuracy 0.470 - virology
184
+ Average accuracy 0.673 - world_religions
185
+ Average accuracy 0.315 - math
186
+ Average accuracy 0.501 - health
187
+ Average accuracy 0.345 - physics
188
+ Average accuracy 0.595 - business
189
+ Average accuracy 0.480 - biology
190
+ Average accuracy 0.330 - chemistry
191
+ Average accuracy 0.442 - computer science
192
+ Average accuracy 0.408 - economics
193
+ Average accuracy 0.503 - engineering
194
+ Average accuracy 0.391 - philosophy
195
+ Average accuracy 0.535 - other
196
+ Average accuracy 0.561 - history
197
+ Average accuracy 0.540 - geography
198
+ Average accuracy 0.594 - politics
199
+ Average accuracy 0.519 - psychology
200
+ Average accuracy 0.572 - culture
201
+ Average accuracy 0.375 - law
202
+ Average accuracy 0.374 - STEM
203
+ Average accuracy 0.419 - humanities
204
+ Average accuracy 0.515 - social sciences
205
+ Average accuracy 0.526 - other (business, health, misc.)
206
+ Average accuracy: 0.455
207
+ ```
208
  <!-- This section describes the evaluation protocols and provides the results. -->
209
 
210
  ### Testing Data, Factors & Metrics