File size: 1,759 Bytes
f2831a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: bart-base-lora-885K-snli-model1
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: snli
      type: stanfordnlp/snli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8271692745376956
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-base-lora-885K-snli-model1

This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4486
- Accuracy: 0.8272

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 256
- eval_batch_size: 128
- seed: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6339        | 1.0   | 2146 | 0.5079          | 0.7996   |
| 0.5725        | 2.0   | 4292 | 0.4618          | 0.8215   |
| 0.5537        | 3.0   | 6438 | 0.4486          | 0.8272   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0