--- license: mit base_model: openai-community/gpt2 tags: - generated_from_trainer datasets: - stanfordnlp/snli metrics: - accuracy model-index: - name: gpt2-snli-model1 results: - task: name: Text Classification type: text-classification dataset: name: snli type: stanfordnlp/snli metrics: - name: Accuracy type: accuracy value: 0.8756350335297703 --- # gpt2-snli-model1 This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the snli dataset. It achieves the following results on the evaluation set: - Loss: 0.3309 - Accuracy: 0.8756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 128 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4499 | 1.0 | 2146 | 0.3658 | 0.8593 | | 0.4065 | 2.0 | 4292 | 0.3434 | 0.8686 | | 0.3785 | 3.0 | 6438 | 0.3309 | 0.8756 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0