File size: 2,271 Bytes
c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 c8b1439 f14baf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: google-bert/bert-large-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-large
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9432517889831918
- name: Recall
type: recall
value: 0.9538875799394143
- name: F1
type: f1
value: 0.9485398711404903
- name: Accuracy
type: accuracy
value: 0.9893561249940426
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-large
This model is a fine-tuned version of [google-bert/bert-large-uncased](https://huggingface.co/google-bert/bert-large-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0517
- Precision: 0.9433
- Recall: 0.9539
- F1: 0.9485
- Accuracy: 0.9894
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0639 | 1.0 | 1756 | 0.0610 | 0.9126 | 0.9349 | 0.9236 | 0.9851 |
| 0.0281 | 2.0 | 3512 | 0.0524 | 0.9420 | 0.9504 | 0.9461 | 0.9883 |
| 0.0148 | 3.0 | 5268 | 0.0517 | 0.9433 | 0.9539 | 0.9485 | 0.9894 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|