File size: 11,463 Bytes
2677707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8174
- Answer: {'precision': 0.7233333333333334, 'recall': 0.8046971569839307, 'f1': 0.7618490345231129, 'number': 809}
- Header: {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119}
- Question: {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065}
- Overall Precision: 0.7351
- Overall Recall: 0.7978
- Overall F1: 0.7652
- Overall Accuracy: 0.8019

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                     | Header                                                                                                       | Question                                                                                                  | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.3435        | 1.0   | 10   | 1.1455          | {'precision': 0.29554655870445345, 'recall': 0.27070457354758964, 'f1': 0.2825806451612903, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.43828125, 'recall': 0.5267605633802817, 'f1': 0.47846481876332625, 'number': 1065}        | 0.3858            | 0.3914         | 0.3885     | 0.6180           |
| 0.9706        | 2.0   | 20   | 0.8933          | {'precision': 0.5545454545454546, 'recall': 0.6786155747836835, 'f1': 0.6103390772651472, 'number': 809}   | {'precision': 0.08695652173913043, 'recall': 0.03361344537815126, 'f1': 0.048484848484848485, 'number': 119} | {'precision': 0.6115916955017301, 'recall': 0.6638497652582159, 'f1': 0.6366501575866726, 'number': 1065} | 0.5748            | 0.6322         | 0.6022     | 0.7308           |
| 0.7426        | 3.0   | 30   | 0.7478          | {'precision': 0.6294058408862034, 'recall': 0.7725587144622992, 'f1': 0.6936736958934517, 'number': 809}   | {'precision': 0.1891891891891892, 'recall': 0.11764705882352941, 'f1': 0.1450777202072539, 'number': 119}    | {'precision': 0.6858333333333333, 'recall': 0.7727699530516432, 'f1': 0.726710816777042, 'number': 1065}  | 0.6449            | 0.7336         | 0.6864     | 0.7770           |
| 0.6123        | 4.0   | 40   | 0.6950          | {'precision': 0.6286266924564797, 'recall': 0.8034610630407911, 'f1': 0.705371676614216, 'number': 809}    | {'precision': 0.19387755102040816, 'recall': 0.15966386554621848, 'f1': 0.17511520737327188, 'number': 119}  | {'precision': 0.6943268416596104, 'recall': 0.7699530516431925, 'f1': 0.730186999109528, 'number': 1065}  | 0.6438            | 0.7471         | 0.6916     | 0.7886           |
| 0.5267        | 5.0   | 50   | 0.6804          | {'precision': 0.6574172892209178, 'recall': 0.761433868974042, 'f1': 0.7056128293241695, 'number': 809}    | {'precision': 0.21818181818181817, 'recall': 0.20168067226890757, 'f1': 0.2096069868995633, 'number': 119}   | {'precision': 0.7246496290189612, 'recall': 0.8253521126760563, 'f1': 0.771729587357331, 'number': 1065}  | 0.6721            | 0.7622         | 0.7143     | 0.8013           |
| 0.4587        | 6.0   | 60   | 0.6701          | {'precision': 0.670490093847758, 'recall': 0.7948084054388134, 'f1': 0.7273755656108597, 'number': 809}    | {'precision': 0.2108843537414966, 'recall': 0.2605042016806723, 'f1': 0.2330827067669173, 'number': 119}     | {'precision': 0.7309602649006622, 'recall': 0.8291079812206573, 'f1': 0.7769467663880335, 'number': 1065} | 0.6729            | 0.7812         | 0.7230     | 0.7977           |
| 0.3981        | 7.0   | 70   | 0.6637          | {'precision': 0.7029063509149623, 'recall': 0.8071693448702101, 'f1': 0.7514384349827388, 'number': 809}   | {'precision': 0.2698412698412698, 'recall': 0.2857142857142857, 'f1': 0.27755102040816326, 'number': 119}    | {'precision': 0.7621483375959079, 'recall': 0.8394366197183099, 'f1': 0.7989276139410187, 'number': 1065} | 0.7096            | 0.7933         | 0.7491     | 0.8062           |
| 0.3608        | 8.0   | 80   | 0.6778          | {'precision': 0.7083333333333334, 'recall': 0.7985166872682324, 'f1': 0.7507263219058687, 'number': 809}   | {'precision': 0.25874125874125875, 'recall': 0.31092436974789917, 'f1': 0.2824427480916031, 'number': 119}   | {'precision': 0.7633851468048359, 'recall': 0.8300469483568075, 'f1': 0.7953216374269007, 'number': 1065} | 0.7081            | 0.7863         | 0.7451     | 0.8003           |
| 0.311         | 9.0   | 90   | 0.6931          | {'precision': 0.6991247264770241, 'recall': 0.7898640296662547, 'f1': 0.7417295414973882, 'number': 809}   | {'precision': 0.2835820895522388, 'recall': 0.31932773109243695, 'f1': 0.30039525691699603, 'number': 119}   | {'precision': 0.7606244579358196, 'recall': 0.8234741784037559, 'f1': 0.7908025247971145, 'number': 1065} | 0.7060            | 0.7797         | 0.7411     | 0.8055           |
| 0.276         | 10.0  | 100  | 0.7144          | {'precision': 0.7298787210584344, 'recall': 0.8182941903584673, 'f1': 0.7715617715617716, 'number': 809}   | {'precision': 0.3103448275862069, 'recall': 0.37815126050420167, 'f1': 0.34090909090909094, 'number': 119}   | {'precision': 0.7814159292035399, 'recall': 0.8291079812206573, 'f1': 0.8045558086560365, 'number': 1065} | 0.7287            | 0.7978         | 0.7617     | 0.8062           |
| 0.2393        | 11.0  | 110  | 0.7342          | {'precision': 0.7155555555555555, 'recall': 0.796044499381953, 'f1': 0.7536571094207138, 'number': 809}    | {'precision': 0.296551724137931, 'recall': 0.36134453781512604, 'f1': 0.32575757575757575, 'number': 119}    | {'precision': 0.774869109947644, 'recall': 0.8338028169014085, 'f1': 0.8032564450474899, 'number': 1065}  | 0.7188            | 0.7903         | 0.7529     | 0.8042           |
| 0.2227        | 12.0  | 120  | 0.7539          | {'precision': 0.7054945054945055, 'recall': 0.7935723114956736, 'f1': 0.7469458987783596, 'number': 809}   | {'precision': 0.33884297520661155, 'recall': 0.3445378151260504, 'f1': 0.3416666666666667, 'number': 119}    | {'precision': 0.7686440677966102, 'recall': 0.8516431924882629, 'f1': 0.8080178173719377, 'number': 1065} | 0.7191            | 0.7978         | 0.7564     | 0.8006           |
| 0.2119        | 13.0  | 130  | 0.7774          | {'precision': 0.7263736263736263, 'recall': 0.8170580964153276, 'f1': 0.7690517742873763, 'number': 809}   | {'precision': 0.28125, 'recall': 0.37815126050420167, 'f1': 0.3225806451612903, 'number': 119}               | {'precision': 0.7714033539276258, 'recall': 0.8206572769953052, 'f1': 0.7952684258416743, 'number': 1065} | 0.7172            | 0.7928         | 0.7531     | 0.7952           |
| 0.1882        | 14.0  | 140  | 0.7688          | {'precision': 0.7270668176670442, 'recall': 0.7935723114956736, 'f1': 0.7588652482269503, 'number': 809}   | {'precision': 0.3384615384615385, 'recall': 0.3697478991596639, 'f1': 0.35341365461847385, 'number': 119}    | {'precision': 0.7883597883597884, 'recall': 0.8394366197183099, 'f1': 0.8130968622100955, 'number': 1065} | 0.7359            | 0.7928         | 0.7633     | 0.8024           |
| 0.1767        | 15.0  | 150  | 0.7717          | {'precision': 0.7244785949506037, 'recall': 0.8158220024721878, 'f1': 0.7674418604651163, 'number': 809}   | {'precision': 0.3548387096774194, 'recall': 0.3697478991596639, 'f1': 0.36213991769547327, 'number': 119}    | {'precision': 0.789612676056338, 'recall': 0.8422535211267606, 'f1': 0.8150840527033166, 'number': 1065}  | 0.7374            | 0.8033         | 0.7690     | 0.8020           |
| 0.1703        | 16.0  | 160  | 0.7943          | {'precision': 0.7231638418079096, 'recall': 0.7911001236093943, 'f1': 0.755608028335301, 'number': 809}    | {'precision': 0.36231884057971014, 'recall': 0.42016806722689076, 'f1': 0.38910505836575876, 'number': 119}  | {'precision': 0.79185119574845, 'recall': 0.8394366197183099, 'f1': 0.8149498632634458, 'number': 1065}   | 0.7361            | 0.7948         | 0.7643     | 0.8017           |
| 0.1643        | 17.0  | 170  | 0.8087          | {'precision': 0.7207207207207207, 'recall': 0.7911001236093943, 'f1': 0.7542722451384797, 'number': 809}   | {'precision': 0.33098591549295775, 'recall': 0.3949579831932773, 'f1': 0.3601532567049809, 'number': 119}    | {'precision': 0.7932263814616756, 'recall': 0.8356807511737089, 'f1': 0.8139003200731596, 'number': 1065} | 0.7328            | 0.7913         | 0.7609     | 0.7990           |
| 0.1443        | 18.0  | 180  | 0.8170          | {'precision': 0.7230419977298524, 'recall': 0.7873918417799752, 'f1': 0.7538461538461538, 'number': 809}   | {'precision': 0.36231884057971014, 'recall': 0.42016806722689076, 'f1': 0.38910505836575876, 'number': 119}  | {'precision': 0.7898936170212766, 'recall': 0.8366197183098592, 'f1': 0.8125854993160054, 'number': 1065} | 0.7350            | 0.7918         | 0.7623     | 0.7994           |
| 0.148         | 19.0  | 190  | 0.8169          | {'precision': 0.7245240761478163, 'recall': 0.799752781211372, 'f1': 0.7602820211515863, 'number': 809}    | {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119}             | {'precision': 0.792149866190901, 'recall': 0.8338028169014085, 'f1': 0.8124428179322964, 'number': 1065}  | 0.7364            | 0.7948         | 0.7645     | 0.8015           |
| 0.1441        | 20.0  | 200  | 0.8174          | {'precision': 0.7233333333333334, 'recall': 0.8046971569839307, 'f1': 0.7618490345231129, 'number': 809}   | {'precision': 0.35766423357664234, 'recall': 0.4117647058823529, 'f1': 0.3828125, 'number': 119}             | {'precision': 0.7904085257548845, 'recall': 0.8356807511737089, 'f1': 0.8124144226380648, 'number': 1065} | 0.7351            | 0.7978         | 0.7652     | 0.8019           |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1