vavelychko commited on
Commit
25d9ae3
1 Parent(s): 9cfbab9

fix CustomNextPlaceModel.py

Browse files
Files changed (1) hide show
  1. CustomNextPlaceModel.py +30 -16
CustomNextPlaceModel.py CHANGED
@@ -126,36 +126,50 @@ class CustomNextPlaceModel:
126
  combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)
127
 
128
  # Predict B scores for different categories
129
- score_B_1 = self.score_b_1.predict_proba_dataset(combined_dataset[combined_dataset['A']==1])
130
- score_B_2 = self.score_b_2.predict_proba_dataset(combined_dataset[combined_dataset['A']==2])
131
- score_B_3 = self.score_b_3.predict_proba_dataset(combined_dataset[combined_dataset['A']==3])
 
 
 
 
 
 
 
 
 
 
 
132
 
133
  # Concatenate B scores
134
- df_B = pd.concat([score_B_1, score_B_2, score_B_3], ignore_index=True)
 
 
135
 
136
  # Further combine and process dataset
137
- combined_dataset = dp.combine_datasets(df_B, dp.X)
138
  combined_dataset = combined_dataset.drop(columns=['0'])
139
  combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)
140
 
141
  # Predict C scores for different categories
142
  c_scores = {
143
  '1': self.score_c_models['1'].predict_dataset(combined_dataset[combined_dataset['B'].isin([1])])
144
- if not combined_dataset[combined_dataset['B'].isin([1])].empty else pd.DataFrame({'price': [0]}),
145
  '2': self.score_c_models['2'].predict_dataset(combined_dataset[combined_dataset['B'].isin([2])])
146
- if not combined_dataset[combined_dataset['B'].isin([2])].empty else pd.DataFrame({'price': [0]}),
147
  '3_4': self.score_c_models['3_4'].predict_dataset(combined_dataset[combined_dataset['B'].isin([3, 4])])
148
- if not combined_dataset[combined_dataset['B'].isin([3, 4])].empty else pd.DataFrame({'price': [0]}),
149
  '5_6': self.score_c_models['5_6'].predict_dataset(combined_dataset[combined_dataset['B'].isin([5, 6])])
150
- if not combined_dataset[combined_dataset['B'].isin([5, 6])].empty else pd.DataFrame({'price': [0]}),
151
  '7': self.score_c_models['7'].predict_dataset(combined_dataset[combined_dataset['B'].isin([7])])
152
- if not combined_dataset[combined_dataset['B'].isin([7])].empty else pd.DataFrame({'price': [0]}),
153
  '8_9': self.score_c_models['8_9'].predict_dataset(combined_dataset[combined_dataset['B'].isin([8, 9])])
154
- if not combined_dataset[combined_dataset['B'].isin([8, 9])].empty else pd.DataFrame({'price': [0]})
155
  }
156
  df_C = pd.concat(
157
  [c_scores[key][['price']] for key in c_scores
158
- if isinstance(c_scores[key], pd.DataFrame) and 'price' in c_scores[key].columns and not c_scores[key].empty],
 
159
  ignore_index=True
160
  )
161
 
@@ -178,12 +192,12 @@ class CustomNextPlaceModel:
178
  result = self.predict(input_data)
179
  predicted_sale_price, predicted_days = result['price'].iloc[0], result['days'].iloc[0] # кол-во дней нужно преобразовать в дату в виде строки
180
 
181
- current_days_on_market = input_data.get('days_on_market', 0) or 0
182
 
183
  # Вычисление даты размещения на рынке
184
- date_listed = datetime.now() - timedelta(days=current_days_on_market)
185
 
186
  # Вычисление предсказанной даты продажи
187
- predicted_sale_date = (date_listed + timedelta(days=predicted_days)).strftime('%Y-%m-%d')
188
 
189
- return predicted_sale_price, predicted_sale_date
 
126
  combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)
127
 
128
  # Predict B scores for different categories
129
+ # score_B_1 = self.score_b_1.predict_proba_dataset(combined_dataset[combined_dataset['A']==1])
130
+ # score_B_2 = self.score_b_2.predict_proba_dataset(combined_dataset[combined_dataset['A']==2])
131
+ # score_B_3 = self.score_b_3.predict_proba_dataset(combined_dataset[combined_dataset['A']==3])
132
+ b_scores = {
133
+ '1': self.score_b_1.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 1])
134
+ if not combined_dataset[combined_dataset['A'] == 1].empty else pd.DataFrame(
135
+ {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
136
+ '2': self.score_b_2.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 2])
137
+ if not combined_dataset[combined_dataset['A'] == 2].empty else pd.DataFrame(
138
+ {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
139
+ '3': self.score_b_3.predict_proba_dataset(combined_dataset[combined_dataset['A'] == 3])
140
+ if not combined_dataset[combined_dataset['A'] == 3].empty else pd.DataFrame(
141
+ {'B_Probability_Class_0': [0], 'B_Probability_Class_1': [0], 'B_Probability_Class_2': [0]}),
142
+ }
143
 
144
  # Concatenate B scores
145
+ df_B = pd.concat([b_scores['1'], b_scores['2'], b_scores['3']], ignore_index=True)
146
+
147
+ df_B_ = df_B.dropna()
148
 
149
  # Further combine and process dataset
150
+ combined_dataset = dp.combine_datasets(df_B_, dp.X)
151
  combined_dataset = combined_dataset.drop(columns=['0'])
152
  combined_dataset, _ = dp.create_convolution_features(combined_dataset, combined_dataset.columns.to_list(), 3)
153
 
154
  # Predict C scores for different categories
155
  c_scores = {
156
  '1': self.score_c_models['1'].predict_dataset(combined_dataset[combined_dataset['B'].isin([1])])
157
+ if not combined_dataset[combined_dataset['B'].isin([1])].empty else pd.DataFrame({'price': [0]}),
158
  '2': self.score_c_models['2'].predict_dataset(combined_dataset[combined_dataset['B'].isin([2])])
159
+ if not combined_dataset[combined_dataset['B'].isin([2])].empty else pd.DataFrame({'price': [0]}),
160
  '3_4': self.score_c_models['3_4'].predict_dataset(combined_dataset[combined_dataset['B'].isin([3, 4])])
161
+ if not combined_dataset[combined_dataset['B'].isin([3, 4])].empty else pd.DataFrame({'price': [0]}),
162
  '5_6': self.score_c_models['5_6'].predict_dataset(combined_dataset[combined_dataset['B'].isin([5, 6])])
163
+ if not combined_dataset[combined_dataset['B'].isin([5, 6])].empty else pd.DataFrame({'price': [0]}),
164
  '7': self.score_c_models['7'].predict_dataset(combined_dataset[combined_dataset['B'].isin([7])])
165
+ if not combined_dataset[combined_dataset['B'].isin([7])].empty else pd.DataFrame({'price': [0]}),
166
  '8_9': self.score_c_models['8_9'].predict_dataset(combined_dataset[combined_dataset['B'].isin([8, 9])])
167
+ if not combined_dataset[combined_dataset['B'].isin([8, 9])].empty else pd.DataFrame({'price': [0]})
168
  }
169
  df_C = pd.concat(
170
  [c_scores[key][['price']] for key in c_scores
171
+ if
172
+ isinstance(c_scores[key], pd.DataFrame) and 'price' in c_scores[key].columns and not c_scores[key].empty],
173
  ignore_index=True
174
  )
175
 
 
192
  result = self.predict(input_data)
193
  predicted_sale_price, predicted_days = result['price'].iloc[0], result['days'].iloc[0] # кол-во дней нужно преобразовать в дату в виде строки
194
 
195
+ current_days_on_market = input_data['days_on_market'].iloc[0] if 'days_on_market' in input_data else 0
196
 
197
  # Вычисление даты размещения на рынке
198
+ date_listed = datetime.now() - timedelta(days=int(current_days_on_market))
199
 
200
  # Вычисление предсказанной даты продажи
201
+ predicted_sale_date = (date_listed + timedelta(days=int(predicted_days))).strftime('%Y-%m-%d')
202
 
203
+ return float(predicted_sale_price), predicted_sale_date