--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: fine-tuned-distilbert-autofill results: [] --- # fine-tuned-distilbert-autofill This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0516 - Precision: 0.9887 - Recall: 0.9876 - F1: 0.9878 - Confusion Matrix: [[ 93 7 0] [ 15 43 0] [ 11 0 2489]] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Confusion Matrix | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------------------------------------------------------:| | No log | 1.0 | 367 | 0.0597 | 0.9626 | 0.9733 | 0.9659 | [[ 100 0 0] [ 58 0 0] [ 13 0 2487]] | | 0.1186 | 2.0 | 734 | 0.0664 | 0.9622 | 0.9722 | 0.9650 | [[ 100 0 0] [ 58 0 0] [ 16 0 2484]] | | 0.1138 | 3.0 | 1101 | 0.0447 | 0.9873 | 0.9853 | 0.9851 | [[ 96 4 0] [ 25 33 0] [ 9 1 2490]] | | 0.1138 | 4.0 | 1468 | 0.0459 | 0.9870 | 0.9857 | 0.9858 | [[ 92 8 0] [ 20 38 0] [ 10 0 2490]] | | 0.094 | 5.0 | 1835 | 0.0518 | 0.9872 | 0.9865 | 0.9867 | [[ 90 10 0] [ 16 42 0] [ 8 2 2490]] | | 0.0725 | 6.0 | 2202 | 0.0606 | 0.9836 | 0.9808 | 0.9819 | [[ 91 9 0] [ 15 43 0] [ 11 16 2473]] | | 0.0811 | 7.0 | 2569 | 0.0572 | 0.9864 | 0.9846 | 0.9849 | [[ 93 7 0] [ 19 39 0] [ 14 1 2485]] | | 0.0811 | 8.0 | 2936 | 0.0610 | 0.9861 | 0.9846 | 0.9851 | [[ 89 11 0] [ 15 43 0] [ 15 0 2485]] | | 0.0602 | 9.0 | 3303 | 0.0465 | 0.9885 | 0.9868 | 0.9869 | [[ 95 5 0] [ 19 39 0] [ 11 0 2489]] | | 0.0457 | 10.0 | 3670 | 0.0516 | 0.9887 | 0.9876 | 0.9878 | [[ 93 7 0] [ 15 43 0] [ 11 0 2489]] | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.2 - Datasets 2.19.2 - Tokenizers 0.19.1