vdos commited on
Commit
7f262a4
·
verified ·
1 Parent(s): 179a086

End of training

Browse files
Files changed (2) hide show
  1. README.md +154 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 4f6d5dbe-c5bf-469a-a8bd-ac53a38104c1
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.5.2`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: Orenguteng/Llama-3-8B-Lexi-Uncensored
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - cd9114cb2bb9d5e5_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/cd9114cb2bb9d5e5_train_data.json
32
+ type:
33
+ field_input: text2
34
+ field_instruction: text1
35
+ field_output: label_text
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ debug: null
41
+ deepspeed: null
42
+ early_stopping_patience: 1
43
+ eval_max_new_tokens: 128
44
+ eval_steps: 25
45
+ eval_table_size: null
46
+ flash_attention: false
47
+ fp16: false
48
+ fsdp: null
49
+ fsdp_config: null
50
+ gradient_accumulation_steps: 16
51
+ gradient_checkpointing: true
52
+ group_by_length: true
53
+ hub_model_id: vdos/4f6d5dbe-c5bf-469a-a8bd-ac53a38104c1
54
+ hub_repo: null
55
+ hub_strategy: checkpoint
56
+ hub_token: null
57
+ learning_rate: 0.0001
58
+ load_in_4bit: false
59
+ load_in_8bit: false
60
+ local_rank: null
61
+ logging_steps: 1
62
+ lora_alpha: 64
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 32
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_steps: 50
70
+ micro_batch_size: 2
71
+ mlflow_experiment_name: /tmp/cd9114cb2bb9d5e5_train_data.json
72
+ model_type: AutoModelForCausalLM
73
+ num_epochs: 3
74
+ optimizer: adamw_torch
75
+ output_dir: miner_id_24
76
+ pad_to_sequence_len: true
77
+ resume_from_checkpoint: null
78
+ s2_attention: null
79
+ sample_packing: false
80
+ save_steps: 25
81
+ sequence_len: 2048
82
+ strict: false
83
+ tf32: false
84
+ tokenizer_type: AutoTokenizer
85
+ train_on_inputs: false
86
+ trust_remote_code: true
87
+ val_set_size: 0.05
88
+ wandb_entity: null
89
+ wandb_mode: online
90
+ wandb_name: 4f6d5dbe-c5bf-469a-a8bd-ac53a38104c1
91
+ wandb_project: Gradients-On-Demand
92
+ wandb_run: your_name
93
+ wandb_runid: 4f6d5dbe-c5bf-469a-a8bd-ac53a38104c1
94
+ warmup_ratio: 0.05
95
+ weight_decay: 0.01
96
+ xformers_attention: true
97
+
98
+ ```
99
+
100
+ </details><br>
101
+
102
+ # 4f6d5dbe-c5bf-469a-a8bd-ac53a38104c1
103
+
104
+ This model is a fine-tuned version of [Orenguteng/Llama-3-8B-Lexi-Uncensored](https://huggingface.co/Orenguteng/Llama-3-8B-Lexi-Uncensored) on the None dataset.
105
+ It achieves the following results on the evaluation set:
106
+ - Loss: 0.1228
107
+
108
+ ## Model description
109
+
110
+ More information needed
111
+
112
+ ## Intended uses & limitations
113
+
114
+ More information needed
115
+
116
+ ## Training and evaluation data
117
+
118
+ More information needed
119
+
120
+ ## Training procedure
121
+
122
+ ### Training hyperparameters
123
+
124
+ The following hyperparameters were used during training:
125
+ - learning_rate: 0.0001
126
+ - train_batch_size: 2
127
+ - eval_batch_size: 2
128
+ - seed: 42
129
+ - distributed_type: multi-GPU
130
+ - num_devices: 4
131
+ - gradient_accumulation_steps: 16
132
+ - total_train_batch_size: 128
133
+ - total_eval_batch_size: 8
134
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
135
+ - lr_scheduler_type: cosine
136
+ - lr_scheduler_warmup_steps: 2
137
+ - training_steps: 50
138
+
139
+ ### Training results
140
+
141
+ | Training Loss | Epoch | Step | Validation Loss |
142
+ |:-------------:|:------:|:----:|:---------------:|
143
+ | 12.1759 | 0.0012 | 1 | 12.8996 |
144
+ | 0.1269 | 0.0291 | 25 | 0.1436 |
145
+ | 0.127 | 0.0583 | 50 | 0.1228 |
146
+
147
+
148
+ ### Framework versions
149
+
150
+ - PEFT 0.13.2
151
+ - Transformers 4.46.3
152
+ - Pytorch 2.3.1+cu121
153
+ - Datasets 3.1.0
154
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63128ffb5e33a232dd91db93594d4fe6afe8513cac272e5f56e13a61797c48d6
3
+ size 335706186