File size: 1,199 Bytes
9d95231
4ef6d7f
 
237948f
 
 
 
 
 
 
 
 
 
 
 
 
9d95231
79ee1d9
ccffb70
79ee1d9
4e0acb4
 
faf57d7
4e0acb4
79ee1d9
a5ab72b
ccffb70
 
4c53382
a5ab72b
4c53382
ccffb70
a5ab72b
 
 
 
 
 
 
 
 
ccffb70
 
 
4ef6d7f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
pipeline_tag: text2text-generation
widget:
- text: Hellooooo
  example_title: Ex 0
- text: believ
  example_title: Ex 1
language:
- en
tags:
- spell
- spell correction
- spelling
- spelling correction
- english
- english spelling
---

# Model Card for Model ID

This is a model for word-based spell correction tasks. This model is generated by fine-tuning bart base model.

This model works best for ''WORD-BASED'' spell correction(`not so good with the sequence of words`).



## How to Get Started with the Model
```python
from transformers import AutoTokenizer, TFBartForConditionalGeneration
tokenizer = AutoTokenizer.from_pretrained("veghar/spell_correct_bart_base")
model = TFBartForConditionalGeneration.from_pretrained("veghar/spell_correct_bart_base")

text='believ'
text_tok=tokenizer(text,padding=True, return_tensors='tf')
input_ids = text_tok['input_ids']
outputs = model.generate(input_ids=input_ids, max_length=10,num_return_sequences=3)
corrected_sentences = tokenizer.batch_decode(outputs, skip_special_tokens=True)

print('Misspelled word:', text)
print('Corrected word:', corrected_sentences)


>>Misspelled word: believ
>>Corrected word: ['believe', 'belief', 'believer']
```