--- pipeline_tag: text2text-generation widget: - text: "Hellooooo" example_title: "Ex 0" - text: "believ" example_title: "Ex 1" --- # Model Card for Model ID This is a model for word-based spell correction tasks. This model is generated by fine-tuning bart base model. This model works best for ''WORD-BASED'' spell correction(`not so good with the sequence of words`). ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("veghar/spell_correct_bart_base") model = AutoModelForSeq2SeqLM.from_pretrained("veghar/spell_correct_bart_base") text='believ' text_tok=tokenizer(text,padding=True, return_tensors='tf') input_ids = text_tok['input_ids'] outputs = model.generate(input_ids=input_ids, max_length=10,num_return_sequences=3) corrected_sentences = tokenizer.batch_decode(outputs, skip_special_tokens=True) print('Misspelled word:', text) print('Corrected word:', corrected_sentences) >>Misspelled word: believ >>Corrected word: ['believe', 'belief', 'believer'] ```