--- language: - hi license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - velocity-whisper-tiny metrics: - wer model-index: - name: whisper-tiny-finetuned-hinglish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: whisper-training type: velocity-whisper-tiny args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 42.262816735415434 --- # whisper-tiny-finetuned-hinglish This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the whisper-training dataset. It achieves the following results on the evaluation set: - Loss: 0.7758 - Wer: 42.2628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.3632 | 1.7825 | 1000 | 0.3962 | 51.0784 | | 0.2411 | 3.5651 | 2000 | 0.3428 | 45.1149 | | 0.1242 | 5.3476 | 3000 | 0.3459 | 42.1685 | | 0.0813 | 7.1301 | 4000 | 0.3610 | 42.1685 | | 0.0654 | 8.9127 | 5000 | 0.3949 | 41.9210 | | 0.0309 | 10.6952 | 6000 | 0.4422 | 42.7814 | | 0.0161 | 12.4777 | 7000 | 0.4836 | 42.3925 | | 0.0067 | 14.2602 | 8000 | 0.5291 | 42.9346 | | 0.0032 | 16.0428 | 9000 | 0.5645 | 42.4514 | | 0.0031 | 17.8253 | 10000 | 0.5951 | 42.7814 | | 0.002 | 19.6078 | 11000 | 0.6248 | 42.5103 | | 0.0007 | 21.3904 | 12000 | 0.6486 | 42.8167 | | 0.0004 | 23.1729 | 13000 | 0.6760 | 42.0625 | | 0.0008 | 24.9554 | 14000 | 0.6982 | 42.4396 | | 0.0018 | 26.7380 | 15000 | 0.7149 | 42.4985 | | 0.0002 | 28.5205 | 16000 | 0.7172 | 41.8739 | | 0.0001 | 30.3030 | 17000 | 0.7307 | 42.4042 | | 0.0001 | 32.0856 | 18000 | 0.7399 | 42.0742 | | 0.0001 | 33.8681 | 19000 | 0.7497 | 42.1332 | | 0.0001 | 35.6506 | 20000 | 0.7608 | 42.0860 | | 0.0 | 37.4332 | 21000 | 0.7695 | 41.9682 | | 0.0 | 39.2157 | 22000 | 0.7758 | 42.2628 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1