rajistics commited on
Commit
f621c53
1 Parent(s): 73eee83

pushing files to the repo from the example!

Browse files
Files changed (4) hide show
  1. README.md +285 -0
  2. config.json +195 -0
  3. confusion_matrix.png +0 -0
  4. skops-v5dfi0sh.pkl +3 -0
README.md ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ library_name: sklearn
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - tabular-classification
8
+ widget:
9
+ structuredData:
10
+ area error:
11
+ - 30.29
12
+ - 96.05
13
+ - 48.31
14
+ compactness error:
15
+ - 0.01911
16
+ - 0.01652
17
+ - 0.01484
18
+ concave points error:
19
+ - 0.01037
20
+ - 0.0137
21
+ - 0.01093
22
+ concavity error:
23
+ - 0.02701
24
+ - 0.02269
25
+ - 0.02813
26
+ fractal dimension error:
27
+ - 0.003586
28
+ - 0.001698
29
+ - 0.002461
30
+ mean area:
31
+ - 481.9
32
+ - 1130.0
33
+ - 748.9
34
+ mean compactness:
35
+ - 0.1058
36
+ - 0.1029
37
+ - 0.1223
38
+ mean concave points:
39
+ - 0.03821
40
+ - 0.07951
41
+ - 0.08087
42
+ mean concavity:
43
+ - 0.08005
44
+ - 0.108
45
+ - 0.1466
46
+ mean fractal dimension:
47
+ - 0.06373
48
+ - 0.05461
49
+ - 0.05796
50
+ mean perimeter:
51
+ - 81.09
52
+ - 123.6
53
+ - 101.7
54
+ mean radius:
55
+ - 12.47
56
+ - 18.94
57
+ - 15.46
58
+ mean smoothness:
59
+ - 0.09965
60
+ - 0.09009
61
+ - 0.1092
62
+ mean symmetry:
63
+ - 0.1925
64
+ - 0.1582
65
+ - 0.1931
66
+ mean texture:
67
+ - 18.6
68
+ - 21.31
69
+ - 19.48
70
+ perimeter error:
71
+ - 2.497
72
+ - 5.486
73
+ - 3.094
74
+ radius error:
75
+ - 0.3961
76
+ - 0.7888
77
+ - 0.4743
78
+ smoothness error:
79
+ - 0.006953
80
+ - 0.004444
81
+ - 0.00624
82
+ symmetry error:
83
+ - 0.01782
84
+ - 0.01386
85
+ - 0.01397
86
+ texture error:
87
+ - 1.044
88
+ - 0.7975
89
+ - 0.7859
90
+ worst area:
91
+ - 677.9
92
+ - 1866.0
93
+ - 1156.0
94
+ worst compactness:
95
+ - 0.2378
96
+ - 0.2336
97
+ - 0.2394
98
+ worst concave points:
99
+ - 0.1015
100
+ - 0.1789
101
+ - 0.1514
102
+ worst concavity:
103
+ - 0.2671
104
+ - 0.2687
105
+ - 0.3791
106
+ worst fractal dimension:
107
+ - 0.0875
108
+ - 0.06589
109
+ - 0.08019
110
+ worst perimeter:
111
+ - 96.05
112
+ - 165.9
113
+ - 124.9
114
+ worst radius:
115
+ - 14.97
116
+ - 24.86
117
+ - 19.26
118
+ worst smoothness:
119
+ - 0.1426
120
+ - 0.1193
121
+ - 0.1546
122
+ worst symmetry:
123
+ - 0.3014
124
+ - 0.2551
125
+ - 0.2837
126
+ worst texture:
127
+ - 24.64
128
+ - 26.58
129
+ - 26.0
130
+ ---
131
+
132
+ # Model description
133
+
134
+ This is a HistGradientBoostingClassifier model trained on breast cancer dataset. It's trained with Halving Grid Search Cross Validation, with parameter grids on max_leaf_nodes and max_depth.
135
+
136
+ ## Intended uses & limitations
137
+
138
+ This model is not ready to be used in production.
139
+
140
+ ## Training Procedure
141
+
142
+ ### Hyperparameters
143
+
144
+ The model is trained with below hyperparameters.
145
+
146
+ <details>
147
+ <summary> Click to expand </summary>
148
+
149
+ | Hyperparameter | Value |
150
+ |---------------------------------|----------------------------------------------------------|
151
+ | aggressive_elimination | False |
152
+ | cv | 5 |
153
+ | error_score | nan |
154
+ | estimator__categorical_features | |
155
+ | estimator__early_stopping | auto |
156
+ | estimator__l2_regularization | 0.0 |
157
+ | estimator__learning_rate | 0.1 |
158
+ | estimator__loss | auto |
159
+ | estimator__max_bins | 255 |
160
+ | estimator__max_depth | |
161
+ | estimator__max_iter | 100 |
162
+ | estimator__max_leaf_nodes | 31 |
163
+ | estimator__min_samples_leaf | 20 |
164
+ | estimator__monotonic_cst | |
165
+ | estimator__n_iter_no_change | 10 |
166
+ | estimator__random_state | |
167
+ | estimator__scoring | loss |
168
+ | estimator__tol | 1e-07 |
169
+ | estimator__validation_fraction | 0.1 |
170
+ | estimator__verbose | 0 |
171
+ | estimator__warm_start | False |
172
+ | estimator | HistGradientBoostingClassifier() |
173
+ | factor | 3 |
174
+ | max_resources | auto |
175
+ | min_resources | exhaust |
176
+ | n_jobs | -1 |
177
+ | param_grid | {'max_leaf_nodes': [5, 10, 15], 'max_depth': [2, 5, 10]} |
178
+ | random_state | 42 |
179
+ | refit | True |
180
+ | resource | n_samples |
181
+ | return_train_score | True |
182
+ | scoring | |
183
+ | verbose | 0 |
184
+
185
+ </details>
186
+
187
+ ### Model Plot
188
+
189
+ The model plot is below.
190
+
191
+ <style>#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 {color: black;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 pre{padding: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable {background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-estimator:hover {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-item {z-index: 1;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-parallel-item:only-child::after {width: 0;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04 div.sk-text-repr-fallback {display: none;}</style><div id="sk-72410a5a-f2ab-48e8-8d36-6c2ba8f6eb04" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="ab167486-be7e-4eb5-be01-ba21adbd7469" type="checkbox" ><label for="ab167486-be7e-4eb5-be01-ba21adbd7469" class="sk-toggleable__label sk-toggleable__label-arrow">HalvingGridSearchCV</label><div class="sk-toggleable__content"><pre>HalvingGridSearchCV(estimator=HistGradientBoostingClassifier(), n_jobs=-1,param_grid={&#x27;max_depth&#x27;: [2, 5, 10],&#x27;max_leaf_nodes&#x27;: [5, 10, 15]},random_state=42)</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e9df9f06-8d9e-4379-ad72-52f461408663" type="checkbox" ><label for="e9df9f06-8d9e-4379-ad72-52f461408663" class="sk-toggleable__label sk-toggleable__label-arrow">HistGradientBoostingClassifier</label><div class="sk-toggleable__content"><pre>HistGradientBoostingClassifier()</pre></div></div></div></div></div></div></div></div></div></div>
192
+
193
+ ## Evaluation Results
194
+
195
+ You can find the details about evaluation process and the evaluation results.
196
+
197
+
198
+
199
+ | Metric | Value |
200
+ |----------|----------|
201
+ | accuracy | 0.959064 |
202
+ | f1 score | 0.959064 |
203
+
204
+ # How to Get Started with the Model
205
+
206
+ Use the code below to get started with the model.
207
+
208
+ <details>
209
+ <summary> Click to expand </summary>
210
+
211
+ ```python
212
+ import pickle
213
+ with open(pkl_filename, 'rb') as file:
214
+ clf = pickle.load(file)
215
+ ```
216
+
217
+ </details>
218
+
219
+
220
+
221
+
222
+ # Model Card Authors
223
+
224
+ This model card is written by following authors:
225
+
226
+ skops_user
227
+
228
+ # Model Card Contact
229
+
230
+ You can contact the model card authors through following channels:
231
+ [More Information Needed]
232
+
233
+ # Citation
234
+
235
+ Below you can find information related to citation.
236
+
237
+ **BibTeX:**
238
+ ```
239
+ bibtex
240
+ @inproceedings{...,year={2020}}
241
+ ```
242
+
243
+
244
+ # Additional Content
245
+
246
+ ## Confusion matrix
247
+
248
+ ![Confusion matrix](confusion_matrix.png)
249
+
250
+ ## Hyperparameter search results
251
+
252
+ <details>
253
+ <summary> Click to expand </summary>
254
+
255
+ | iter | n_resources | mean_fit_time | std_fit_time | mean_score_time | std_score_time | param_max_depth | param_max_leaf_nodes | params | split0_test_score | split1_test_score | split2_test_score | split3_test_score | split4_test_score | mean_test_score | std_test_score | rank_test_score | split0_train_score | split1_train_score | split2_train_score | split3_train_score | split4_train_score | mean_train_score | std_train_score |
256
+ |--------|---------------|-----------------|----------------|-------------------|------------------|-------------------|------------------------|-----------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|-------------------|
257
+ | 0 | 44 | 0.0498069 | 0.0107112 | 0.0121156 | 0.0061838 | 2 | 5 | {'max_depth': 2, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
258
+ | 0 | 44 | 0.0492636 | 0.0187271 | 0.00738611 | 0.00245441 | 2 | 10 | {'max_depth': 2, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
259
+ | 0 | 44 | 0.0572055 | 0.0153176 | 0.0111395 | 0.0010297 | 2 | 15 | {'max_depth': 2, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
260
+ | 0 | 44 | 0.0498482 | 0.0177091 | 0.00857358 | 0.00415935 | 5 | 5 | {'max_depth': 5, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
261
+ | 0 | 44 | 0.0500658 | 0.00992094 | 0.00998321 | 0.00527031 | 5 | 10 | {'max_depth': 5, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
262
+ | 0 | 44 | 0.0525903 | 0.0151616 | 0.00874681 | 0.00462998 | 5 | 15 | {'max_depth': 5, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
263
+ | 0 | 44 | 0.0512018 | 0.0130152 | 0.00881834 | 0.00500514 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
264
+ | 0 | 44 | 0.0566921 | 0.0186051 | 0.00513492 | 0.000498488 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
265
+ | 0 | 44 | 0.060587 | 0.04041 | 0.00987453 | 0.00529624 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.875 | 0.5 | 0.625 | 0.75 | 0.375 | 0.625 | 0.176777 | 5 | 0.628571 | 0.628571 | 0.628571 | 0.514286 | 0.514286 | 0.582857 | 0.0559883 |
266
+ | 1 | 132 | 0.232459 | 0.0479878 | 0.0145514 | 0.00856422 | 10 | 5 | {'max_depth': 10, 'max_leaf_nodes': 5} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
267
+ | 1 | 132 | 0.272297 | 0.0228833 | 0.011561 | 0.0068272 | 10 | 10 | {'max_depth': 10, 'max_leaf_nodes': 10} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
268
+ | 1 | 132 | 0.239161 | 0.0330412 | 0.0116591 | 0.003554 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.961538 | 0.923077 | 0.923077 | 0.961538 | 0.961538 | 0.946154 | 0.0188422 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
269
+ | 2 | 396 | 0.920334 | 0.18198 | 0.0166654 | 0.00776263 | 10 | 15 | {'max_depth': 10, 'max_leaf_nodes': 15} | 0.962025 | 0.911392 | 0.987342 | 0.974359 | 0.935897 | 0.954203 | 0.0273257 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
270
+
271
+ </details>
272
+
273
+ ## Classification report
274
+
275
+ <details>
276
+ <summary> Click to expand </summary>
277
+
278
+ | index | precision | recall | f1-score | support |
279
+ |--------------|-------------|----------|------------|-----------|
280
+ | malignant | 0.951613 | 0.936508 | 0.944 | 63 |
281
+ | benign | 0.963303 | 0.972222 | 0.967742 | 108 |
282
+ | macro avg | 0.957458 | 0.954365 | 0.955871 | 171 |
283
+ | weighted avg | 0.958996 | 0.959064 | 0.958995 | 171 |
284
+
285
+ </details>
config.json ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "mean radius",
5
+ "mean texture",
6
+ "mean perimeter",
7
+ "mean area",
8
+ "mean smoothness",
9
+ "mean compactness",
10
+ "mean concavity",
11
+ "mean concave points",
12
+ "mean symmetry",
13
+ "mean fractal dimension",
14
+ "radius error",
15
+ "texture error",
16
+ "perimeter error",
17
+ "area error",
18
+ "smoothness error",
19
+ "compactness error",
20
+ "concavity error",
21
+ "concave points error",
22
+ "symmetry error",
23
+ "fractal dimension error",
24
+ "worst radius",
25
+ "worst texture",
26
+ "worst perimeter",
27
+ "worst area",
28
+ "worst smoothness",
29
+ "worst compactness",
30
+ "worst concavity",
31
+ "worst concave points",
32
+ "worst symmetry",
33
+ "worst fractal dimension"
34
+ ],
35
+ "environment": [
36
+ "scikit-learn=1.0.2"
37
+ ],
38
+ "example_input": {
39
+ "area error": [
40
+ 30.29,
41
+ 96.05,
42
+ 48.31
43
+ ],
44
+ "compactness error": [
45
+ 0.01911,
46
+ 0.01652,
47
+ 0.01484
48
+ ],
49
+ "concave points error": [
50
+ 0.01037,
51
+ 0.0137,
52
+ 0.01093
53
+ ],
54
+ "concavity error": [
55
+ 0.02701,
56
+ 0.02269,
57
+ 0.02813
58
+ ],
59
+ "fractal dimension error": [
60
+ 0.003586,
61
+ 0.001698,
62
+ 0.002461
63
+ ],
64
+ "mean area": [
65
+ 481.9,
66
+ 1130.0,
67
+ 748.9
68
+ ],
69
+ "mean compactness": [
70
+ 0.1058,
71
+ 0.1029,
72
+ 0.1223
73
+ ],
74
+ "mean concave points": [
75
+ 0.03821,
76
+ 0.07951,
77
+ 0.08087
78
+ ],
79
+ "mean concavity": [
80
+ 0.08005,
81
+ 0.108,
82
+ 0.1466
83
+ ],
84
+ "mean fractal dimension": [
85
+ 0.06373,
86
+ 0.05461,
87
+ 0.05796
88
+ ],
89
+ "mean perimeter": [
90
+ 81.09,
91
+ 123.6,
92
+ 101.7
93
+ ],
94
+ "mean radius": [
95
+ 12.47,
96
+ 18.94,
97
+ 15.46
98
+ ],
99
+ "mean smoothness": [
100
+ 0.09965,
101
+ 0.09009,
102
+ 0.1092
103
+ ],
104
+ "mean symmetry": [
105
+ 0.1925,
106
+ 0.1582,
107
+ 0.1931
108
+ ],
109
+ "mean texture": [
110
+ 18.6,
111
+ 21.31,
112
+ 19.48
113
+ ],
114
+ "perimeter error": [
115
+ 2.497,
116
+ 5.486,
117
+ 3.094
118
+ ],
119
+ "radius error": [
120
+ 0.3961,
121
+ 0.7888,
122
+ 0.4743
123
+ ],
124
+ "smoothness error": [
125
+ 0.006953,
126
+ 0.004444,
127
+ 0.00624
128
+ ],
129
+ "symmetry error": [
130
+ 0.01782,
131
+ 0.01386,
132
+ 0.01397
133
+ ],
134
+ "texture error": [
135
+ 1.044,
136
+ 0.7975,
137
+ 0.7859
138
+ ],
139
+ "worst area": [
140
+ 677.9,
141
+ 1866.0,
142
+ 1156.0
143
+ ],
144
+ "worst compactness": [
145
+ 0.2378,
146
+ 0.2336,
147
+ 0.2394
148
+ ],
149
+ "worst concave points": [
150
+ 0.1015,
151
+ 0.1789,
152
+ 0.1514
153
+ ],
154
+ "worst concavity": [
155
+ 0.2671,
156
+ 0.2687,
157
+ 0.3791
158
+ ],
159
+ "worst fractal dimension": [
160
+ 0.0875,
161
+ 0.06589,
162
+ 0.08019
163
+ ],
164
+ "worst perimeter": [
165
+ 96.05,
166
+ 165.9,
167
+ 124.9
168
+ ],
169
+ "worst radius": [
170
+ 14.97,
171
+ 24.86,
172
+ 19.26
173
+ ],
174
+ "worst smoothness": [
175
+ 0.1426,
176
+ 0.1193,
177
+ 0.1546
178
+ ],
179
+ "worst symmetry": [
180
+ 0.3014,
181
+ 0.2551,
182
+ 0.2837
183
+ ],
184
+ "worst texture": [
185
+ 24.64,
186
+ 26.58,
187
+ 26.0
188
+ ]
189
+ },
190
+ "model": {
191
+ "file": "skops-v5dfi0sh.pkl"
192
+ },
193
+ "task": "tabular-classification"
194
+ }
195
+ }
confusion_matrix.png ADDED
skops-v5dfi0sh.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1967cade2d54b4ab0784741d8015566e9923a0042c4592a602c0ac271a26775c
3
+ size 242801