File size: 2,239 Bytes
6db6469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: deberta-v3-base-finetuned-3d-sentiment
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-base-finetuned-3d-sentiment

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9369
- Accuracy: 0.8104
- Precision: 0.8132
- Recall: 0.8104
- F1: 0.8111

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 12762
- num_epochs: 7
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.7346        | 1.0   | 3190  | 0.6162          | 0.7666   | 0.7733    | 0.7666 | 0.7676 |
| 0.4839        | 2.0   | 6380  | 0.5586          | 0.8013   | 0.8033    | 0.8013 | 0.8016 |
| 0.416         | 3.0   | 9570  | 0.5250          | 0.8026   | 0.8044    | 0.8026 | 0.8019 |
| 0.3501        | 4.0   | 12760 | 0.5294          | 0.8067   | 0.8068    | 0.8067 | 0.8053 |
| 0.2661        | 5.0   | 15950 | 0.6626          | 0.8093   | 0.8127    | 0.8093 | 0.8094 |
| 0.173         | 6.0   | 19140 | 0.7242          | 0.8093   | 0.8106    | 0.8093 | 0.8097 |
| 0.1146        | 7.0   | 22330 | 0.9369          | 0.8104   | 0.8132    | 0.8104 | 0.8111 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.3