--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: deberta-v3-base-finetuned-3d-sentiment results: [] --- # deberta-v3-base-finetuned-3d-sentiment This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9369 - Accuracy: 0.8104 - Precision: 0.8132 - Recall: 0.8104 - F1: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 12762 - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.7346 | 1.0 | 3190 | 0.6162 | 0.7666 | 0.7733 | 0.7666 | 0.7676 | | 0.4839 | 2.0 | 6380 | 0.5586 | 0.8013 | 0.8033 | 0.8013 | 0.8016 | | 0.416 | 3.0 | 9570 | 0.5250 | 0.8026 | 0.8044 | 0.8026 | 0.8019 | | 0.3501 | 4.0 | 12760 | 0.5294 | 0.8067 | 0.8068 | 0.8067 | 0.8053 | | 0.2661 | 5.0 | 15950 | 0.6626 | 0.8093 | 0.8127 | 0.8093 | 0.8094 | | 0.173 | 6.0 | 19140 | 0.7242 | 0.8093 | 0.8106 | 0.8093 | 0.8097 | | 0.1146 | 7.0 | 22330 | 0.9369 | 0.8104 | 0.8132 | 0.8104 | 0.8111 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu117 - Datasets 2.10.1 - Tokenizers 0.13.3