venetis commited on
Commit
a9a5083
·
1 Parent(s): d43a3a0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - recall
9
+ - precision
10
+ model-index:
11
+ - name: distilbert-base-uncased_finetuned_text_2_disease
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # distilbert-base-uncased_finetuned_text_2_disease
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.2976
23
+ - Accuracy: 0.9850
24
+ - F1: 0.9849
25
+ - Recall: 0.9850
26
+ - Precision: 0.9865
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 32
47
+ - eval_batch_size: 32
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:|
58
+ | 1.5787 | 1.0 | 167 | 1.3061 | 0.8934 | 0.8798 | 0.8934 | 0.9136 |
59
+ | 0.5703 | 2.0 | 334 | 0.4505 | 0.9775 | 0.9774 | 0.9775 | 0.9800 |
60
+ | 0.3837 | 3.0 | 501 | 0.2976 | 0.9850 | 0.9849 | 0.9850 | 0.9865 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.26.1
66
+ - Pytorch 1.13.1+cu116
67
+ - Datasets 2.10.1
68
+ - Tokenizers 0.13.2