--- license: llama3 library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: llama3-8b-hermes-sandals-sample-10k results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false datasets: - path: ./data/openhermes2_5_10k.jsonl type: sharegpt conversation: llama3 dataset_prepared_path: val_set_size: 0.15 output_dir: ./outputs_lora-out hub_model_id: venetis/llama3-8b-hermes-sandals-sample-10k data_seed: 117 seed: 117 chat_template: llama3 adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: sequence_len: 4096 sample_packing: true eval_sample_packing: true pad_to_sequence_len: true wandb_project: llama-3-8b-hermes-sandals-sample-10k wandb_entity: venetispall gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 2e-4 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true s2_attention: warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: #UPDATES mk2 - added special tokens special_tokens: eos_token: "<|im_end|>" pad_token: "<|end_of_text|>" tokens: - "<|im_start|>" - "<|im_end|>" lora_modules_to_save: - embed_tokens - lm_head ```

# llama3-8b-hermes-sandals-sample-10k This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 117 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9791 | 0.0102 | 1 | 1.0349 | | 0.7725 | 0.2538 | 25 | 0.8235 | | 0.8046 | 0.5076 | 50 | 0.8169 | | 0.7678 | 0.7614 | 75 | 0.8099 | | 0.7324 | 1.0152 | 100 | 0.7924 | | 0.4486 | 1.2487 | 125 | 0.8461 | | 0.4419 | 1.5025 | 150 | 0.8462 | | 0.4992 | 1.7563 | 175 | 0.8350 | | 0.4671 | 2.0102 | 200 | 0.8272 | | 0.2618 | 2.2411 | 225 | 0.8615 | | 0.275 | 2.4949 | 250 | 0.8697 | | 0.2583 | 2.7487 | 275 | 0.8672 | | 0.3158 | 3.0025 | 300 | 0.8639 | | 0.2073 | 3.2335 | 325 | 0.8940 | | 0.1602 | 3.4873 | 350 | 0.8931 | | 0.1904 | 3.7411 | 375 | 0.8933 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1