venetis commited on
Commit
6e9bba6
1 Parent(s): 64fdfdf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -0
README.md ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: roberta-base-finetuned-3d-sentiment
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # roberta-base-finetuned-3d-sentiment
19
+
20
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6047
23
+ - Accuracy: 0.7713
24
+ - Precision: 0.7719
25
+ - Recall: 0.7713
26
+ - F1: 0.7703
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 4
50
+ - total_train_batch_size: 64
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 6381
54
+ - num_epochs: 7
55
+ - mixed_precision_training: Native AMP
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 0.7978 | 1.0 | 1595 | 0.7782 | 0.6953 | 0.7191 | 0.6953 | 0.6926 |
62
+ | 0.5526 | 2.0 | 3190 | 0.6951 | 0.7229 | 0.7398 | 0.7229 | 0.7233 |
63
+ | 0.4904 | 3.0 | 4785 | 0.6390 | 0.7388 | 0.7530 | 0.7388 | 0.7366 |
64
+ | 0.4307 | 4.0 | 6380 | 0.6047 | 0.7713 | 0.7719 | 0.7713 | 0.7703 |
65
+
66
+
67
+ ### Framework versions
68
+
69
+ - Transformers 4.26.1
70
+ - Pytorch 1.13.1+cu117
71
+ - Datasets 2.10.1
72
+ - Tokenizers 0.13.3