File size: 1,888 Bytes
074ebbe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-webnlg-mt-2.0e-04-multicorp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-finetuned-webnlg-mt-2.0e-04-multicorp

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3764
- Rouge1: 0.8196
- Rouge2: 0.6426
- Rougel: 0.6983
- Rougelsum: 0.7239
- Gen Len: 44.2931

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 0.8444        | 1.23  | 1500 | 0.4807          | 0.7814 | 0.5860 | 0.6585 | 0.6825    | 43.3923 |
| 0.7098        | 2.47  | 3000 | 0.4127          | 0.8047 | 0.6206 | 0.6824 | 0.7074    | 43.5941 |
| 0.678         | 3.7   | 4500 | 0.3856          | 0.8151 | 0.6363 | 0.6933 | 0.7181    | 44.1976 |
| 0.651         | 4.93  | 6000 | 0.3764          | 0.8196 | 0.6426 | 0.6983 | 0.7239    | 44.2931 |


### Framework versions

- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3