File size: 1,889 Bytes
6ab7efe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: openrail
base_model: versae/gzip-bert
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: gzipbert_imdb_roberta_lowlr
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: test
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gzipbert_imdb_roberta_lowlr

This model is a fine-tuned version of [versae/gzip-bert](https://huggingface.co/versae/gzip-bert) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6932
- Accuracy: 0.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.7068        | 1.0   | 1563 | 0.7024          | 0.5      |
| 0.7027        | 2.0   | 3126 | 0.6952          | 0.5      |
| 0.6999        | 3.0   | 4689 | 0.6943          | 0.5      |
| 0.6994        | 4.0   | 6252 | 0.6933          | 0.5      |
| 0.6976        | 5.0   | 7815 | 0.6932          | 0.5      |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3