# ONNX for image classification model import onnxruntime as ort import numpy from PIL import Image ort_sess = ort.InferenceSession('model.onnx') classes = [ "train" , "seaplane" , "motorbus" , "airplane" , "stair" , "bicycle" , "bus" , "car" , "crosswalk" , "hydrant" , "motorcycle" , "mountain" , "stairs" , "tow truck" , "traffic light" , "traffic sign" , "truck" , ] img = Image.open("image.jpg").convert('RGB') img = img.resize((300, 300 * img.size[1] // img.size[0]), Image.ANTIALIAS) inp_numpy = numpy.array(img)[None].astype('float32') class_scores = ort_sess.run(None, {'input': inp_numpy})[0][0] print("") print("class_scores", class_scores) print("Class : ", classes[class_scores.argmax()])