File size: 2,185 Bytes
6486054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0882
- Rouge1: 17.4498
- Rouge2: 8.7404
- Rougel: 16.8415
- Rougelsum: 16.9066
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 6.4445 | 1.0 | 1209 | 3.3476 | 13.3795 | 5.5143 | 12.8433 | 12.7807 |
| 3.9098 | 2.0 | 2418 | 3.2364 | 15.5805 | 7.6998 | 14.9371 | 14.9673 |
| 3.5854 | 3.0 | 3627 | 3.1560 | 17.0237 | 8.2938 | 16.3307 | 16.3798 |
| 3.4231 | 4.0 | 4836 | 3.1527 | 18.0902 | 9.0059 | 17.1599 | 17.2816 |
| 3.3166 | 5.0 | 6045 | 3.1183 | 17.5474 | 8.6267 | 16.9442 | 17.0014 |
| 3.2545 | 6.0 | 7254 | 3.0967 | 17.6619 | 8.625 | 17.0709 | 17.0763 |
| 3.2021 | 7.0 | 8463 | 3.0897 | 18.1442 | 9.1184 | 17.6043 | 17.5848 |
| 3.1818 | 8.0 | 9672 | 3.0882 | 17.4498 | 8.7404 | 16.8415 | 16.9066 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
|