Upload PPO LunarLander-v2 trained agent
Browse files- README.md +6 -130
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +22 -22
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
@@ -25,137 +25,13 @@ model-index:
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
-
##
|
|
|
29 |
|
30 |
-
```python
|
31 |
-
# Virtual display
|
32 |
-
from pyvirtualdisplay import Display
|
33 |
-
|
34 |
-
virtual_display = Display(visible=0, size=(1400, 900))
|
35 |
-
virtual_display.start()
|
36 |
-
```
|
37 |
-
## Import the packages 📦
|
38 |
-
```python
|
39 |
-
import gym
|
40 |
-
|
41 |
-
from huggingface_sb3 import load_from_hub, package_to_hub, push_to_hub
|
42 |
-
from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.
|
43 |
-
|
44 |
-
from stable_baselines3 import PPO
|
45 |
-
from stable_baselines3.common.evaluation import evaluate_policy
|
46 |
-
from stable_baselines3.common.env_util import make_vec_env
|
47 |
-
```
|
48 |
-
## Understand what is Gym and how it works 🤖
|
49 |
-
```python
|
50 |
-
import gym
|
51 |
-
|
52 |
-
# First, we create our environment called LunarLander-v2
|
53 |
-
env = gym.make("LunarLander-v2")
|
54 |
-
|
55 |
-
# Then we reset this environment
|
56 |
-
observation = env.reset()
|
57 |
-
|
58 |
-
for _ in range(20):
|
59 |
-
# Take a random action
|
60 |
-
action = env.action_space.sample()
|
61 |
-
print("Action taken:", action)
|
62 |
-
|
63 |
-
# Do this action in the environment and get
|
64 |
-
# next_state, reward, done and info
|
65 |
-
observation, reward, done, info = env.step(action)
|
66 |
-
|
67 |
-
# If the game is done (in our case we land, crashed or timeout)
|
68 |
-
if done:
|
69 |
-
# Reset the environment
|
70 |
-
print("Environment is reset")
|
71 |
-
observation = env.reset()
|
72 |
-
```
|
73 |
-
## Create the LunarLander environment 🌛 and understand how it works
|
74 |
-
```python
|
75 |
-
# We create our environment with gym.make("<name_of_the_environment>")
|
76 |
-
env = gym.make("LunarLander-v2")
|
77 |
-
env.reset()
|
78 |
-
print("_____OBSERVATION SPACE_____ \n")
|
79 |
-
print("Observation Space Shape", env.observation_space.shape)
|
80 |
-
print("Sample observation", env.observation_space.sample()) # Get a random observation
|
81 |
-
print("\n _____ACTION SPACE_____ \n")
|
82 |
-
print("Action Space Shape", env.action_space.n)
|
83 |
-
print("Action Space Sample", env.action_space.sample()) # Take a random action
|
84 |
-
|
85 |
-
# Create the environment
|
86 |
-
env = make_vec_env('LunarLander-v2', n_envs=16)
|
87 |
-
```
|
88 |
-
## Create the Model 🤖
|
89 |
-
```python
|
90 |
-
# We added some parameters to accelerate the training
|
91 |
-
model = PPO(
|
92 |
-
policy = 'MlpPolicy',
|
93 |
-
env = env,
|
94 |
-
n_steps = 1024,
|
95 |
-
batch_size = 64,
|
96 |
-
n_epochs = 4,
|
97 |
-
gamma = 0.999,
|
98 |
-
gae_lambda = 0.98,
|
99 |
-
ent_coef = 0.01,
|
100 |
-
verbose=1)
|
101 |
-
model_name = "ppo-LunarLander-v2"
|
102 |
-
```
|
103 |
-
|
104 |
-
## Train the PPO agent 🏃
|
105 |
-
```python
|
106 |
-
# Train it for 1,000,000 timesteps
|
107 |
-
model.learn(total_timesteps=3000000)
|
108 |
-
# Save the model
|
109 |
-
model.save(model_name)
|
110 |
-
```
|
111 |
|
112 |
-
## Evaluate the agent 📈
|
113 |
```python
|
114 |
-
|
115 |
-
|
116 |
|
117 |
-
|
118 |
-
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
|
119 |
-
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
|
120 |
-
```
|
121 |
-
## Publish our trained model on the Hub 🔥
|
122 |
-
```python
|
123 |
-
notebook_login()
|
124 |
-
!git config --global credential.helper store
|
125 |
```
|
126 |
-
```python
|
127 |
-
import gym
|
128 |
-
|
129 |
-
from stable_baselines3 import PPO
|
130 |
-
from stable_baselines3.common.vec_env import DummyVecEnv
|
131 |
-
from stable_baselines3.common.env_util import make_vec_env
|
132 |
-
|
133 |
-
from huggingface_sb3 import package_to_hub
|
134 |
-
|
135 |
-
# PLACE the variables you've just defined two cells above
|
136 |
-
# Define the name of the environment
|
137 |
-
env_id = "LunarLander-v2"
|
138 |
-
|
139 |
-
# TODO: Define the model architecture we used
|
140 |
-
model_architecture = "PPO"
|
141 |
-
|
142 |
-
## Define a repo_id
|
143 |
-
## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
144 |
-
## CHANGE WITH YOUR REPO ID
|
145 |
-
repo_id = "vicfeuga/ppo-LunarLander-v2" # Change with your repo id, you can't push with mine 😄
|
146 |
-
|
147 |
-
## Define the commit message
|
148 |
-
commit_message = "Upload PPO LunarLander-v2 trained agent"
|
149 |
-
|
150 |
-
# Create the evaluation env
|
151 |
-
eval_env = DummyVecEnv([lambda: gym.make(env_id)])
|
152 |
-
|
153 |
-
# PLACE the package_to_hub function you've just filled here
|
154 |
-
package_to_hub(model=model, # Our trained model
|
155 |
-
model_name=model_name, # The name of our trained model
|
156 |
-
model_architecture=model_architecture, # The model architecture we used: in our case PPO
|
157 |
-
env_id=env_id, # Name of the environment
|
158 |
-
eval_env=eval_env, # Evaluation Environment
|
159 |
-
repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name} for instance ThomasSimonini/ppo-LunarLander-v2
|
160 |
-
commit_message=commit_message)
|
161 |
-
```
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 285.10 +/- 13.63
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
25 |
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
|
|
32 |
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
|
36 |
+
...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f455c197040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f455c1970d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f455c197160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f455c1971f0>", "_build": "<function ActorCriticPolicy._build at 0x7f455c197280>", "forward": "<function ActorCriticPolicy.forward at 0x7f455c197310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f455c1973a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f455c197430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f455c1974c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f455c197550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f455c1975e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f455c195120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673263818381712278, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObkIj0pmF26fL2GNuBedzGM4z051nijtQAAgD8AAIA/5pb2vQfjXD/hr7K9s6LYvqzQEb5uuYo9AAAAAAAAAAAAYO07RqhPP/zvlr3288y+yI4VvDatdb0AAAAAAAAAAJoZkLl7HIS6MpyRst6ierBAqec6qxEMMwAAgD8AAIA/TZfxPa0pLz9Aq3e+p0DOvjPjyjzwTYe+AAAAAAAAAADmjG+93eMOPhw3ET1q2p6+Oph3uwNf87wAAAAAAAAAAGbAO7z4ueE9XuQzPSNDpb4fnfa9QiThvAAAAAAAAAAAGgDCPSkkcboaFSC4IoQXs05FJrtIkDs3AAAAAAAAAAAAAKk5ZUNaPuERxDsyeru+/eKNvRrZlz0AAAAAAAAAAAAVurz6e1U+aUm1vN09rr5c06i9M6KkPAAAAAAAAAAAra0vPrhrWz+C1Re+D/rAvnEaXz7fzEu+AAAAAAAAAABNA+Y9cDiTP55MnD6DFtK+A6SJPvX4iD4AAAAAAAAAAFtKmr6kw4g/2UvIvUQ3877Kyf6+EKBsPQAAAAAAAAAAjbQ/PhIBoz8OABM/XA/XvjCUwj4gou0+AAAAAAAAAADNg4S8Ug63u7p8i7vsXpE88pkbPVBBdr0AAIA/AACAP42ksj0zWAo/FCqYvoIot77uhdm9wEVcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlYJuL6lZckCUhpRSlIwBbJRL4YwBdJRHQKUsRGViWmh1fZQoaAZoCWgPQwh/bJIfMThxQJSGlFKUaBVL3WgWR0ClLE562OQydX2UKGgGaAloD0MICYuKOF2XcUCUhpRSlGgVS91oFkdApSyVBUrCnHV9lChoBmgJaA9DCGe610k9OnBAlIaUUpRoFUvraBZHQKUs3RXOnl51fZQoaAZoCWgPQwhzR//LtcJsQJSGlFKUaBVL8WgWR0ClLNwCr92pdX2UKGgGaAloD0MIjnQGRt6TcUCUhpRSlGgVTRYBaBZHQKUtAdJ8OTd1fZQoaAZoCWgPQwhh/Z/DfLhyQJSGlFKUaBVNBwFoFkdApS0CJQ+EAnV9lChoBmgJaA9DCGsMOiH0XW9AlIaUUpRoFUvhaBZHQKUtOWom5Ud1fZQoaAZoCWgPQwjH8xlQb3RvQJSGlFKUaBVL/GgWR0ClLV/ffoA5dX2UKGgGaAloD0MI3EjZIil1cUCUhpRSlGgVS+JoFkdApS2Cjvd/KHV9lChoBmgJaA9DCGkB2lazxG9AlIaUUpRoFUv9aBZHQKUtpwtrbg11fZQoaAZoCWgPQwjRQCybOTFwQJSGlFKUaBVL2mgWR0ClLdf6O5rhdX2UKGgGaAloD0MIe6Lrwk9ocECUhpRSlGgVS+toFkdApS3cHt4RmXV9lChoBmgJaA9DCGb1DreD4XFAlIaUUpRoFU0OAWgWR0ClLe53cHnmdX2UKGgGaAloD0MI/Z/DfHnBP0CUhpRSlGgVS8BoFkdApS4/smfGuXV9lChoBmgJaA9DCO27IvhfpW9AlIaUUpRoFUv2aBZHQKUusaEzwc51fZQoaAZoCWgPQwhcrKjBtHVyQJSGlFKUaBVL3GgWR0ClLsmDDjzadX2UKGgGaAloD0MIcayL2+j+cUCUhpRSlGgVS+FoFkdApS7k63iJf3V9lChoBmgJaA9DCJrtCn0wVHJAlIaUUpRoFUvbaBZHQKUvYWdmQKd1fZQoaAZoCWgPQwhbs5WXvEByQJSGlFKUaBVL92gWR0ClL3Hn2ZiNdX2UKGgGaAloD0MIxR9FnfnlckCUhpRSlGgVS+BoFkdApS+dI065oXV9lChoBmgJaA9DCHqJsUy/dHFAlIaUUpRoFUvSaBZHQKUvqs8PnSx1fZQoaAZoCWgPQwjPo+L/Tn5xQJSGlFKUaBVL5GgWR0ClL6r74zrNdX2UKGgGaAloD0MIovFEEGfkckCUhpRSlGgVS/ZoFkdApS+7P0I1L3V9lChoBmgJaA9DCGE41zCDTnFAlIaUUpRoFUveaBZHQKUv7vE0iyJ1fZQoaAZoCWgPQwi3e7lPjtNwQJSGlFKUaBVL2mgWR0ClMChX8wYcdX2UKGgGaAloD0MIahSSzKpqckCUhpRSlGgVS+hoFkdApTArsOXmeXV9lChoBmgJaA9DCBtn0xGAr3FAlIaUUpRoFUvhaBZHQKUwiH2ys0Z1fZQoaAZoCWgPQwhmEvWCTwFyQJSGlFKUaBVNAAFoFkdApTDHkaMrE3V9lChoBmgJaA9DCETbMXWXI3FAlIaUUpRoFU0CAWgWR0ClMNE9t/FzdX2UKGgGaAloD0MI9BlQb0bQcECUhpRSlGgVS/doFkdApTEdbA1vVHV9lChoBmgJaA9DCK+YEd4e2m5AlIaUUpRoFUvkaBZHQKUxaan75211fZQoaAZoCWgPQwg2rKksCt1xQJSGlFKUaBVL9GgWR0ClMYX8n/kvdX2UKGgGaAloD0MITkUqjC1MckCUhpRSlGgVS/RoFkdApTGyJCSid3V9lChoBmgJaA9DCAUYlj+f/nFAlIaUUpRoFUvYaBZHQKUx1zbN8md1fZQoaAZoCWgPQwhqiCr82VVwQJSGlFKUaBVL3GgWR0ClOxRh2GIsdX2UKGgGaAloD0MIrRQCuUR9cUCUhpRSlGgVS9poFkdApTs0A1ejVXV9lChoBmgJaA9DCOblsPvOnXJAlIaUUpRoFUvYaBZHQKU7T7Qb+991fZQoaAZoCWgPQwhEaW/wBZRxQJSGlFKUaBVL42gWR0ClO2kWqLjxdX2UKGgGaAloD0MI9FDbhtF6cUCUhpRSlGgVS/BoFkdApTvjuMMqjXV9lChoBmgJaA9DCJsEb0hjHXBAlIaUUpRoFUvkaBZHQKU8Ao+fRNR1fZQoaAZoCWgPQwhckZigBsVuQJSGlFKUaBVL9mgWR0ClPDGOlwcYdX2UKGgGaAloD0MI4/p3faa4cUCUhpRSlGgVS91oFkdApTybodMj/3V9lChoBmgJaA9DCNEhcCRQyW5AlIaUUpRoFUv2aBZHQKU8mt7rs0J1fZQoaAZoCWgPQwiY9s391eJwQJSGlFKUaBVL/GgWR0ClPOlZ5iVjdX2UKGgGaAloD0MIqB5pcJtMcUCUhpRSlGgVS+FoFkdApTz1SOzY3HV9lChoBmgJaA9DCHycacK2LXNAlIaUUpRoFUvXaBZHQKU9IR7qptJ1fZQoaAZoCWgPQwjtuOF3081wQJSGlFKUaBVL7GgWR0ClPX1LJ0W/dX2UKGgGaAloD0MIHjaRmUvLcUCUhpRSlGgVS+FoFkdApT2KQV9F4XV9lChoBmgJaA9DCNP02QFXWnJAlIaUUpRoFUvhaBZHQKU9xQnhKlJ1fZQoaAZoCWgPQwhypZ4FIdFwQJSGlFKUaBVL6mgWR0ClPcU/W1+idX2UKGgGaAloD0MIk/5eCs9NcECUhpRSlGgVS+toFkdApT4AmkWRBHV9lChoBmgJaA9DCNrk8ElnpnFAlIaUUpRoFUvkaBZHQKU+EXKKYRd1fZQoaAZoCWgPQwiz6nO1FadwQJSGlFKUaBVL9GgWR0ClPizGxUvPdX2UKGgGaAloD0MIjPhOzDqUcUCUhpRSlGgVS/JoFkdApT6rY02tMnV9lChoBmgJaA9DCOEKKNRT/XBAlIaUUpRoFU0CAWgWR0ClPv/NqxkedX2UKGgGaAloD0MI96sA3+3tb0CUhpRSlGgVTQABaBZHQKU/MqBmPHV1fZQoaAZoCWgPQwikObLySxdxQJSGlFKUaBVL72gWR0ClP3E9ECvHdX2UKGgGaAloD0MIzxWlhOA7bkCUhpRSlGgVS/RoFkdApT+AFFDv3XV9lChoBmgJaA9DCAnh0cYRGXFAlIaUUpRoFUvkaBZHQKU/pdcB2fV1fZQoaAZoCWgPQwg2c0hqoZdyQJSGlFKUaBVL7WgWR0ClP89bX6IndX2UKGgGaAloD0MIG2K85lWucECUhpRSlGgVS+FoFkdApT/a6asp5XV9lChoBmgJaA9DCLcMOEtJvHBAlIaUUpRoFUvnaBZHQKVAT4C6pYN1fZQoaAZoCWgPQwh0CYfeIspwQJSGlFKUaBVL+mgWR0ClQIAAIY3vdX2UKGgGaAloD0MIGVWGcXfocECUhpRSlGgVS+JoFkdApUCB5LRKH3V9lChoBmgJaA9DCOaUgJiE7XFAlIaUUpRoFU0AAWgWR0ClQOBomG/OdX2UKGgGaAloD0MIx549l6nObkCUhpRSlGgVS99oFkdApUDuFxn3+XV9lChoBmgJaA9DCCLElbN3xW9AlIaUUpRoFUvzaBZHQKVA9/kvK2d1fZQoaAZoCWgPQwiV8loJ3dZxQJSGlFKUaBVL+WgWR0ClQRhG6PKddX2UKGgGaAloD0MIkUWaeIdzcECUhpRSlGgVS+RoFkdApUFtC/oJRnV9lChoBmgJaA9DCBoziXrBinJAlIaUUpRoFUvjaBZHQKVBurOqvNh1fZQoaAZoCWgPQwhHIF7Xb8hwQJSGlFKUaBVL5WgWR0ClQe4i5d4WdX2UKGgGaAloD0MI203wTZPncUCUhpRSlGgVS+RoFkdApUIg5HVf/nV9lChoBmgJaA9DCCdok8NnEnFAlIaUUpRoFUvdaBZHQKVCanivPkd1fZQoaAZoCWgPQwjW/s72aPNwQJSGlFKUaBVL9mgWR0ClQmpyhi9adX2UKGgGaAloD0MIk4rG2t+NcUCUhpRSlGgVS+1oFkdApUJz41xbS3V9lChoBmgJaA9DCMWp1sJsG3FAlIaUUpRoFUvtaBZHQKVCqIpH7P91fZQoaAZoCWgPQwjFAIkm0LZvQJSGlFKUaBVL5WgWR0ClQwVjAi3YdX2UKGgGaAloD0MIoUyjycU2b0CUhpRSlGgVS+9oFkdApUNWdy1eB3V9lChoBmgJaA9DCBH8byW7qHBAlIaUUpRoFUvyaBZHQKVDXky1uzh1fZQoaAZoCWgPQwhXPsvzIAJyQJSGlFKUaBVL42gWR0ClQ41G0/nodX2UKGgGaAloD0MI5llJKz5xcECUhpRSlGgVS+VoFkdApUOggTyrgnV9lChoBmgJaA9DCPAyw0ZZ725AlIaUUpRoFUvxaBZHQKVDzdD6WPd1fZQoaAZoCWgPQwjYLJeNTs1xQJSGlFKUaBVL8WgWR0ClQ/BWo3rEdX2UKGgGaAloD0MI3bQZp+G5cUCUhpRSlGgVS+poFkdApUQ1mDlHSXV9lChoBmgJaA9DCEGADB07pnFAlIaUUpRoFUvtaBZHQKVEi1c+qzZ1fZQoaAZoCWgPQwj0+/7Ni/pnQJSGlFKUaBVN6ANoFkdApUSV8eCCjHV9lChoBmgJaA9DCGSxTSpavXBAlIaUUpRoFUvXaBZHQKVEryWAwwl1fZQoaAZoCWgPQwi5GW7Ap8ZyQJSGlFKUaBVL1WgWR0ClRSW+fywwdX2UKGgGaAloD0MIfhzNkRVZcUCUhpRSlGgVTQABaBZHQKVFcC5Etul1fZQoaAZoCWgPQwhVMgBU8bNwQJSGlFKUaBVNAwFoFkdApUWD4WUKRnV9lChoBmgJaA9DCAOTG0XWNnNAlIaUUpRoFU0NAWgWR0ClRZmqxTsIdX2UKGgGaAloD0MIXfsCeuGTcECUhpRSlGgVS9RoFkdApUXcifQKKHV9lChoBmgJaA9DCNkngGIkGXJAlIaUUpRoFUvsaBZHQKVGMNEPUa11fZQoaAZoCWgPQwhLPQtCuVpzQJSGlFKUaBVNEQFoFkdApUZPggow23V9lChoBmgJaA9DCDrMlxdgmXBAlIaUUpRoFUvpaBZHQKVGWy/KyOd1fZQoaAZoCWgPQwg8aHbd28RwQJSGlFKUaBVL8mgWR0ClRox+BpYcdX2UKGgGaAloD0MIZjIcz+dac0CUhpRSlGgVS9loFkdApUaU78vVVnV9lChoBmgJaA9DCOxP4nMnv3NAlIaUUpRoFUvfaBZHQKVG8/8EV351fZQoaAZoCWgPQwirmEo/Yc5vQJSGlFKUaBVNAgFoFkdApUb0OG0u2HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b1fcb5940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b1fcb59d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b1fcb5a60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b1fcb5af0>", "_build": "<function ActorCriticPolicy._build at 0x7f1b1fcb5b80>", "forward": "<function ActorCriticPolicy.forward at 0x7f1b1fcb5c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b1fcb5ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1b1fcb5d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b1fcb5dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b1fcb5e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b1fcb5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1b1fc9bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 30, "num_timesteps": 3010560, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673340816052036269, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAwAAAAAAAGBFCj6b4ik/A4D9PYOERr/s/2w+QCWIPQAAAAAAAAAAZjwNPSkof7qisQgz7RE4MRU/TTu/Qp6zAACAPwAAgD+ab1A8FJCDugDAczo1REw1tsE5OgMpjLkAAIA/AACAP5ppJjspaGm6LlEOOhBjlDWVI7g6ELqHNAAAgD8AAIA/gKUTvnxHgz72J88++E0Hv7IaX7rPi8c+AAAAAAAAAAAA+tM96bsLPu23j74hIJC+/AxYvYZIJr4AAAAAAAAAAHNvtb189aM/RX3jvguFDL9i4Au+lrufvgAAAAAAAAAAmlmWPGxd9Ltb1Ay+xEHoPGhKPz2qrr+9AACAPwAAgD+apRq8hfvcua4wwbU1SrawTTSbu4KIADUAAIA/AACAP/C0hz7UzJ8/5sYNPzHRAr9RWeQ+6ORWPgAAAAAAAAAAZkbXuymUYbrdwe47h3ZNNZHYKbsf1EQ0AACAPwAAgD9mmpe8exCKuhqaITRtsYEv1IEGu+88nLMAAIA/AACAP5rmkrzO56u842GCPiqPPr7/qPa9QnM6vgAAgD8AAAAA02QbPh9lfz4z2Ny+Wh3svnn81jywa1++AAAAAAAAAADNz9G8XCMuuv7VTTy0doc8bw3Duv6zbj0AAIA/AACAP82sPDy4Fqc/wvYLPoTSLb/VCQU8J3w5PQAAAAAAAAAAmuFIPJJlhT+zGe888gBfvyu/aDxdQO28AAAAAAAAAAAa43s9ew6JuubzLbjebyWz27fsOd5wSjcAAIA/AACAP6ZsOL5undM+K1ykPr7cH79m8i2+1uKHPgAAAAAAAAAAM5ZXPY+2dLqIa7s2CXaFMSlu3ro+G9y1AACAPwAAgD9N/ys+v0chPlhi3r4XkM2+I564PRXweb4AAAAAAAAAAAB03byPllW6J3uuOR3xS7SlTKW6GoZzswAAgD8AAIA/rUgTPod7cD9IAqo+JrAmvwISkj7MhjU+AAAAAAAAAACaPog8lCOzOwLnS761zjO+3LO1u5giaj8AAAAAAAAAAFNzMD4FSTY+MMzCvoGh076zTUs99qMqvgAAAAAAAAAAAESgPQCIsz4etCa+lHHyvudGGT1qX2u9AAAAAAAAAABmfK48+yWgvL2uJryQkfI8pAnwvW5zST0AAIA/AACAPw0YXD49Owe90gISO+8Qs7nGmWq+s4qDugAAgD8AAIA/5tO7PcUGkj8mAJg+tNJBv8lwKz6YQAs+AAAAAAAAAABmvn69gzUWvKYDRD3UcUU9W0J6PTo4Er4AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLHksIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHoWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg7709idVckCUhpRSlIwBbJRLyYwBdJRHQKoG2DgZTAF1fZQoaAZoCWgPQwgtCrsoenlxQJSGlFKUaBVL0WgWR0CqBxY5DJEIdX2UKGgGaAloD0MIKZXwhF41c0CUhpRSlGgVTS0BaBZHQKoHG5ZKWcB1fZQoaAZoCWgPQwglkBK79sNzQJSGlFKUaBVL/2gWR0CqB1yB06o3dX2UKGgGaAloD0MIf8LZrWVjcUCUhpRSlGgVS8NoFkdAqgeBIFvAGnV9lChoBmgJaA9DCBTsv84NQHFAlIaUUpRoFUvWaBZHQKoHpRDTjNp1fZQoaAZoCWgPQwhcrn5sEupwQJSGlFKUaBVLpmgWR0CqB9Mrd30PdX2UKGgGaAloD0MIfa62Yr+bcECUhpRSlGgVS7RoFkdAqgfqz5XU6XV9lChoBmgJaA9DCHIYzF+hlHJAlIaUUpRoFUvKaBZHQKoISTyJ9Ap1fZQoaAZoCWgPQwjk9ssna/VyQJSGlFKUaBVLl2gWR0CqCFat9x6wdX2UKGgGaAloD0MI+yDLgomncUCUhpRSlGgVS8poFkdAqgiC++M6zXV9lChoBmgJaA9DCMVU+gmnxHNAlIaUUpRoFUvGaBZHQKoIxoIv8Il1fZQoaAZoCWgPQwixGeCCbJ1xQJSGlFKUaBVLxGgWR0CqCNS+6Ae8dX2UKGgGaAloD0MIqtbCLHRRc0CUhpRSlGgVS+poFkdAqgjNHDrJKnV9lChoBmgJaA9DCEn0Mopl43JAlIaUUpRoFUvYaBZHQKoJCMPz4Dd1fZQoaAZoCWgPQwiDpiVWBq5wQJSGlFKUaBVLrGgWR0CqCStYr8R+dX2UKGgGaAloD0MIdv9YiA4lcUCUhpRSlGgVTUkBaBZHQKoJcTRplBh1fZQoaAZoCWgPQwiYM9sVehtyQJSGlFKUaBVLxGgWR0CqCcC1y/9HdX2UKGgGaAloD0MIbvqzHylCc0CUhpRSlGgVS+doFkdAqgndxffGdnV9lChoBmgJaA9DCBPyQc+mvnFAlIaUUpRoFUu8aBZHQKoJ7RMN+b51fZQoaAZoCWgPQwh/3H75JM1wQJSGlFKUaBVLuGgWR0CqCigAIY3vdX2UKGgGaAloD0MIaOvgYC8DdECUhpRSlGgVS9toFkdAqgpDJIUah3V9lChoBmgJaA9DCGJJufucaXFAlIaUUpRoFU0wAWgWR0CqCkhlDneSdX2UKGgGaAloD0MIs+xJYPOrcECUhpRSlGgVS8JoFkdAqgpO1KGtZHV9lChoBmgJaA9DCF69iozONnJAlIaUUpRoFU0MAWgWR0CqCk2vjfeldX2UKGgGaAloD0MIPZl/9A07c0CUhpRSlGgVTQ4BaBZHQKoKXtShrWR1fZQoaAZoCWgPQwjSOqqaIDxyQJSGlFKUaBVNJQFoFkdAqgsG1KGtZHV9lChoBmgJaA9DCFch5SdVZnBAlIaUUpRoFUvdaBZHQKoLKny/bj91fZQoaAZoCWgPQwjCEg8oG19zQJSGlFKUaBVLuGgWR0CqCzB/Aj6fdX2UKGgGaAloD0MIQl96+3PIc0CUhpRSlGgVS7xoFkdAqgtCr3j+73V9lChoBmgJaA9DCHo57L4j7HFAlIaUUpRoFUvaaBZHQKoLgqVhTfl1fZQoaAZoCWgPQwjVPEfk+8FzQJSGlFKUaBVL9mgWR0CqC4JQ+EAYdX2UKGgGaAloD0MICwithy9DPkCUhpRSlGgVS1toFkdAqgve2/i5u3V9lChoBmgJaA9DCIcXRKQmg3NAlIaUUpRoFUvxaBZHQKoMMJ53Tux1fZQoaAZoCWgPQwgV5GcjFytxQJSGlFKUaBVLuWgWR0CqDKRy4nWrdX2UKGgGaAloD0MIjh6/tykOckCUhpRSlGgVS+ZoFkdAqgzDh3qzJXV9lChoBmgJaA9DCEz+J3831nNAlIaUUpRoFUvhaBZHQKoM1fJmukl1fZQoaAZoCWgPQwgX9N4YQrFxQJSGlFKUaBVLqWgWR0CqDPX5vcagdX2UKGgGaAloD0MI3pBGBQ7LcECUhpRSlGgVS75oFkdAqg0bnRsuWnV9lChoBmgJaA9DCJ4oCYk03XJAlIaUUpRoFUvraBZHQKoNLkTYdyV1fZQoaAZoCWgPQwjxKQDGs41zQJSGlFKUaBVLwmgWR0CqDSwnx8UmdX2UKGgGaAloD0MIGvm84qlPc0CUhpRSlGgVS8ZoFkdAqg14dXDFZXV9lChoBmgJaA9DCAJjfQMTbnNAlIaUUpRoFUvxaBZHQKoNt2q1gIB1fZQoaAZoCWgPQwh4YtaLIapyQJSGlFKUaBVLnGgWR0CqDctZ/0/XdX2UKGgGaAloD0MIP/89eO3Lb0CUhpRSlGgVTQgBaBZHQKoOU+ajN6h1fZQoaAZoCWgPQwj2RUJbTkBxQJSGlFKUaBVL22gWR0CqDmtCJGe+dX2UKGgGaAloD0MI4gFlU65JckCUhpRSlGgVS8loFkdAqg69A5aNdnV9lChoBmgJaA9DCDNQGf/+d3FAlIaUUpRoFUvMaBZHQKoO9CFbmlt1fZQoaAZoCWgPQwglehnFclBwQJSGlFKUaBVLzWgWR0CqDwTpgTh6dX2UKGgGaAloD0MIBMjQsQPhcUCUhpRSlGgVS9FoFkdAqg8y86FM7HV9lChoBmgJaA9DCAhyUMKM7HFAlIaUUpRoFUu9aBZHQKoPevW6K+B1fZQoaAZoCWgPQwiYMQVrXAJyQJSGlFKUaBVLuWgWR0CqD/S1eBxxdX2UKGgGaAloD0MIeeV620wNc0CUhpRSlGgVS6VoFkdAqhA+zByjpXV9lChoBmgJaA9DCKDCEaTSMnFAlIaUUpRoFUvaaBZHQKoQhOIInjR1fZQoaAZoCWgPQwhfJLTlnCZxQJSGlFKUaBVNRwFoFkdAqhB/FirksHV9lChoBmgJaA9DCN3u5T75uHBAlIaUUpRoFUu+aBZHQKoQiMnZ00Z1fZQoaAZoCWgPQwjg929eHO9zQJSGlFKUaBVL5GgWR0CqELWmxdIHdX2UKGgGaAloD0MIXDl7ZzQ9ckCUhpRSlGgVTS4BaBZHQKoRJ8F6iTN1fZQoaAZoCWgPQwh4CyQofhtxQJSGlFKUaBVNPgFoFkdAqhFfezlcQnV9lChoBmgJaA9DCMRg/gpZw3FAlIaUUpRoFU04AWgWR0CqEcg2Ifr9dX2UKGgGaAloD0MIfEYiNELQcECUhpRSlGgVS7ZoFkdAqhHN+7UXpHV9lChoBmgJaA9DCEzChTxCC3JAlIaUUpRoFUvKaBZHQKoR4S0Sh8J1fZQoaAZoCWgPQwiO6nQgq5NwQJSGlFKUaBVLrmgWR0CqEfJ0wJw9dX2UKGgGaAloD0MIlKXW+w0HcUCUhpRSlGgVS71oFkdAqhH8Of/WD3V9lChoBmgJaA9DCIrNx7VhVXNAlIaUUpRoFUvnaBZHQKoSeIkZ75V1fZQoaAZoCWgPQwgtlbcj3DdzQJSGlFKUaBVN1wFoFkdAqhKFyYG+snV9lChoBmgJaA9DCHCaPjtgH3BAlIaUUpRoFUu8aBZHQKoSiwt8NQV1fZQoaAZoCWgPQwg1KQXd3nxyQJSGlFKUaBVLsWgWR0CqEwDU3GXHdX2UKGgGaAloD0MIcaq1MAv+cUCUhpRSlGgVS+9oFkdAqhMsK/mDDnV9lChoBmgJaA9DCKTjamTXSXJAlIaUUpRoFUu5aBZHQKoTh3g1m8N1fZQoaAZoCWgPQwiu8ZnsX3tyQJSGlFKUaBVNVQFoFkdAqhORkAggYHV9lChoBmgJaA9DCDhpGhRNfHNAlIaUUpRoFU0IAWgWR0CqE6M8YAKfdX2UKGgGaAloD0MIQFBu27dWckCUhpRSlGgVTSEBaBZHQKoUIvkili11fZQoaAZoCWgPQwhR3sfR3CxyQJSGlFKUaBVNbAFoFkdAqhSNIwudw3V9lChoBmgJaA9DCFPL1voiqHJAlIaUUpRoFUvaaBZHQKoUlQAMlTp1fZQoaAZoCWgPQwiVuflGNNdxQJSGlFKUaBVL2mgWR0CqFRjIJZ4fdX2UKGgGaAloD0MIhpLJqV2YckCUhpRSlGgVS+RoFkdAqhUUPvrnknV9lChoBmgJaA9DCPRwAtOpAHNAlIaUUpRoFUu4aBZHQKoVQEkjX4F1fZQoaAZoCWgPQwi0WfW5GlhxQJSGlFKUaBVLuWgWR0CqFT3VCojwdX2UKGgGaAloD0MI1NNH4M9zcECUhpRSlGgVS7xoFkdAqhYxC+lCTnV9lChoBmgJaA9DCHehuU6jp3NAlIaUUpRoFU0xAWgWR0CqFjYxk/bCdX2UKGgGaAloD0MI7s1vmOgCcECUhpRSlGgVS+ZoFkdAqhZuUOd5IHV9lChoBmgJaA9DCA7bFmV2HXNAlIaUUpRoFUvpaBZHQKoWraFEiMZ1fZQoaAZoCWgPQwjL2TujLbdyQJSGlFKUaBVL/2gWR0CqFsz7di2EdX2UKGgGaAloD0MIdFyN7AqqckCUhpRSlGgVTWABaBZHQKoW1Pa+N991fZQoaAZoCWgPQwhb0HtjyLdyQJSGlFKUaBVLmWgWR0CqFuviDM/ydX2UKGgGaAloD0MIcZNRZVitcECUhpRSlGgVS81oFkdAqhb+ukk8inV9lChoBmgJaA9DCNriGp/JE3JAlIaUUpRoFUvXaBZHQKoXRF6zE751fZQoaAZoCWgPQwgS+S6lrm9xQJSGlFKUaBVLumgWR0CqF0o91U2ldX2UKGgGaAloD0MILQWk/U+JcECUhpRSlGgVS8FoFkdAqhdkHWz4UXV9lChoBmgJaA9DCLudfeXB/nJAlIaUUpRoFU2SAmgWR0CqF3G8ujASdX2UKGgGaAloD0MI0jb+RKUJckCUhpRSlGgVS+FoFkdAqheRVyWAw3V9lChoBmgJaA9DCDYf14YKYHJAlIaUUpRoFUvIaBZHQKoXmCmMwUR1fZQoaAZoCWgPQwjqBgq8EzhxQJSGlFKUaBVNSwFoFkdAqhhUfaHsTnV9lChoBmgJaA9DCJj75CjARHNAlIaUUpRoFU0EAWgWR0CqGHzQmeDndX2UKGgGaAloD0MI0zHnGXuwc0CUhpRSlGgVS9BoFkdAqhi65NGmUHV9lChoBmgJaA9DCP9eCg8ar29AlIaUUpRoFUuvaBZHQKoY6GHHmzV1fZQoaAZoCWgPQwgh6j4AaX5yQJSGlFKUaBVL12gWR0CqGQCJGe+VdX2UKGgGaAloD0MIUFPL1rpocECUhpRSlGgVS+VoFkdAqhlNUp/gBXV9lChoBmgJaA9DCBL7BFCMFEFAlIaUUpRoFUtvaBZHQKoZhBsyi251ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 1024, "gamma": 0.9999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f622c3810362412d39dfe03290e22f5e7600b0d3eccaed9277c3b4e5a3364157
|
3 |
+
size 147218
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,13 +41,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,34 +56,34 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
-
"gamma": 0.
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1b1fcb5940>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1b1fcb59d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1b1fcb5a60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1b1fcb5af0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1b1fcb5b80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1b1fcb5c10>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1b1fcb5ca0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1b1fcb5d30>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1b1fcb5dc0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1b1fcb5e50>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1b1fcb5ee0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1b1fc9bde0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 30,
|
45 |
+
"num_timesteps": 3010560,
|
46 |
"_total_timesteps": 3000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1673340816052036269,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVNQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAwAAAAAAAGBFCj6b4ik/A4D9PYOERr/s/2w+QCWIPQAAAAAAAAAAZjwNPSkof7qisQgz7RE4MRU/TTu/Qp6zAACAPwAAgD+ab1A8FJCDugDAczo1REw1tsE5OgMpjLkAAIA/AACAP5ppJjspaGm6LlEOOhBjlDWVI7g6ELqHNAAAgD8AAIA/gKUTvnxHgz72J88++E0Hv7IaX7rPi8c+AAAAAAAAAAAA+tM96bsLPu23j74hIJC+/AxYvYZIJr4AAAAAAAAAAHNvtb189aM/RX3jvguFDL9i4Au+lrufvgAAAAAAAAAAmlmWPGxd9Ltb1Ay+xEHoPGhKPz2qrr+9AACAPwAAgD+apRq8hfvcua4wwbU1SrawTTSbu4KIADUAAIA/AACAP/C0hz7UzJ8/5sYNPzHRAr9RWeQ+6ORWPgAAAAAAAAAAZkbXuymUYbrdwe47h3ZNNZHYKbsf1EQ0AACAPwAAgD9mmpe8exCKuhqaITRtsYEv1IEGu+88nLMAAIA/AACAP5rmkrzO56u842GCPiqPPr7/qPa9QnM6vgAAgD8AAAAA02QbPh9lfz4z2Ny+Wh3svnn81jywa1++AAAAAAAAAADNz9G8XCMuuv7VTTy0doc8bw3Duv6zbj0AAIA/AACAP82sPDy4Fqc/wvYLPoTSLb/VCQU8J3w5PQAAAAAAAAAAmuFIPJJlhT+zGe888gBfvyu/aDxdQO28AAAAAAAAAAAa43s9ew6JuubzLbjebyWz27fsOd5wSjcAAIA/AACAP6ZsOL5undM+K1ykPr7cH79m8i2+1uKHPgAAAAAAAAAAM5ZXPY+2dLqIa7s2CXaFMSlu3ro+G9y1AACAPwAAgD9N/ys+v0chPlhi3r4XkM2+I564PRXweb4AAAAAAAAAAAB03byPllW6J3uuOR3xS7SlTKW6GoZzswAAgD8AAIA/rUgTPod7cD9IAqo+JrAmvwISkj7MhjU+AAAAAAAAAACaPog8lCOzOwLnS761zjO+3LO1u5giaj8AAAAAAAAAAFNzMD4FSTY+MMzCvoGh076zTUs99qMqvgAAAAAAAAAAAESgPQCIsz4etCa+lHHyvudGGT1qX2u9AAAAAAAAAABmfK48+yWgvL2uJryQkfI8pAnwvW5zST0AAIA/AACAPw0YXD49Owe90gISO+8Qs7nGmWq+s4qDugAAgD8AAIA/5tO7PcUGkj8mAJg+tNJBv8lwKz6YQAs+AAAAAAAAAABmvn69gzUWvKYDRD3UcUU9W0J6PTo4Er4AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLHksIhpSMAUOUdJRSlC4="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHoWUjAFDlHSUUpQu"
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIg7709idVckCUhpRSlIwBbJRLyYwBdJRHQKoG2DgZTAF1fZQoaAZoCWgPQwgtCrsoenlxQJSGlFKUaBVL0WgWR0CqBxY5DJEIdX2UKGgGaAloD0MIKZXwhF41c0CUhpRSlGgVTS0BaBZHQKoHG5ZKWcB1fZQoaAZoCWgPQwglkBK79sNzQJSGlFKUaBVL/2gWR0CqB1yB06o3dX2UKGgGaAloD0MIf8LZrWVjcUCUhpRSlGgVS8NoFkdAqgeBIFvAGnV9lChoBmgJaA9DCBTsv84NQHFAlIaUUpRoFUvWaBZHQKoHpRDTjNp1fZQoaAZoCWgPQwhcrn5sEupwQJSGlFKUaBVLpmgWR0CqB9Mrd30PdX2UKGgGaAloD0MIfa62Yr+bcECUhpRSlGgVS7RoFkdAqgfqz5XU6XV9lChoBmgJaA9DCHIYzF+hlHJAlIaUUpRoFUvKaBZHQKoISTyJ9Ap1fZQoaAZoCWgPQwjk9ssna/VyQJSGlFKUaBVLl2gWR0CqCFat9x6wdX2UKGgGaAloD0MI+yDLgomncUCUhpRSlGgVS8poFkdAqgiC++M6zXV9lChoBmgJaA9DCMVU+gmnxHNAlIaUUpRoFUvGaBZHQKoIxoIv8Il1fZQoaAZoCWgPQwixGeCCbJ1xQJSGlFKUaBVLxGgWR0CqCNS+6Ae8dX2UKGgGaAloD0MIqtbCLHRRc0CUhpRSlGgVS+poFkdAqgjNHDrJKnV9lChoBmgJaA9DCEn0Mopl43JAlIaUUpRoFUvYaBZHQKoJCMPz4Dd1fZQoaAZoCWgPQwiDpiVWBq5wQJSGlFKUaBVLrGgWR0CqCStYr8R+dX2UKGgGaAloD0MIdv9YiA4lcUCUhpRSlGgVTUkBaBZHQKoJcTRplBh1fZQoaAZoCWgPQwiYM9sVehtyQJSGlFKUaBVLxGgWR0CqCcC1y/9HdX2UKGgGaAloD0MIbvqzHylCc0CUhpRSlGgVS+doFkdAqgndxffGdnV9lChoBmgJaA9DCBPyQc+mvnFAlIaUUpRoFUu8aBZHQKoJ7RMN+b51fZQoaAZoCWgPQwh/3H75JM1wQJSGlFKUaBVLuGgWR0CqCigAIY3vdX2UKGgGaAloD0MIaOvgYC8DdECUhpRSlGgVS9toFkdAqgpDJIUah3V9lChoBmgJaA9DCGJJufucaXFAlIaUUpRoFU0wAWgWR0CqCkhlDneSdX2UKGgGaAloD0MIs+xJYPOrcECUhpRSlGgVS8JoFkdAqgpO1KGtZHV9lChoBmgJaA9DCF69iozONnJAlIaUUpRoFU0MAWgWR0CqCk2vjfeldX2UKGgGaAloD0MIPZl/9A07c0CUhpRSlGgVTQ4BaBZHQKoKXtShrWR1fZQoaAZoCWgPQwjSOqqaIDxyQJSGlFKUaBVNJQFoFkdAqgsG1KGtZHV9lChoBmgJaA9DCFch5SdVZnBAlIaUUpRoFUvdaBZHQKoLKny/bj91fZQoaAZoCWgPQwjCEg8oG19zQJSGlFKUaBVLuGgWR0CqCzB/Aj6fdX2UKGgGaAloD0MIQl96+3PIc0CUhpRSlGgVS7xoFkdAqgtCr3j+73V9lChoBmgJaA9DCHo57L4j7HFAlIaUUpRoFUvaaBZHQKoLgqVhTfl1fZQoaAZoCWgPQwjVPEfk+8FzQJSGlFKUaBVL9mgWR0CqC4JQ+EAYdX2UKGgGaAloD0MICwithy9DPkCUhpRSlGgVS1toFkdAqgve2/i5u3V9lChoBmgJaA9DCIcXRKQmg3NAlIaUUpRoFUvxaBZHQKoMMJ53Tux1fZQoaAZoCWgPQwgV5GcjFytxQJSGlFKUaBVLuWgWR0CqDKRy4nWrdX2UKGgGaAloD0MIjh6/tykOckCUhpRSlGgVS+ZoFkdAqgzDh3qzJXV9lChoBmgJaA9DCEz+J3831nNAlIaUUpRoFUvhaBZHQKoM1fJmukl1fZQoaAZoCWgPQwgX9N4YQrFxQJSGlFKUaBVLqWgWR0CqDPX5vcagdX2UKGgGaAloD0MI3pBGBQ7LcECUhpRSlGgVS75oFkdAqg0bnRsuWnV9lChoBmgJaA9DCJ4oCYk03XJAlIaUUpRoFUvraBZHQKoNLkTYdyV1fZQoaAZoCWgPQwjxKQDGs41zQJSGlFKUaBVLwmgWR0CqDSwnx8UmdX2UKGgGaAloD0MIGvm84qlPc0CUhpRSlGgVS8ZoFkdAqg14dXDFZXV9lChoBmgJaA9DCAJjfQMTbnNAlIaUUpRoFUvxaBZHQKoNt2q1gIB1fZQoaAZoCWgPQwh4YtaLIapyQJSGlFKUaBVLnGgWR0CqDctZ/0/XdX2UKGgGaAloD0MIP/89eO3Lb0CUhpRSlGgVTQgBaBZHQKoOU+ajN6h1fZQoaAZoCWgPQwj2RUJbTkBxQJSGlFKUaBVL22gWR0CqDmtCJGe+dX2UKGgGaAloD0MI4gFlU65JckCUhpRSlGgVS8loFkdAqg69A5aNdnV9lChoBmgJaA9DCDNQGf/+d3FAlIaUUpRoFUvMaBZHQKoO9CFbmlt1fZQoaAZoCWgPQwglehnFclBwQJSGlFKUaBVLzWgWR0CqDwTpgTh6dX2UKGgGaAloD0MIBMjQsQPhcUCUhpRSlGgVS9FoFkdAqg8y86FM7HV9lChoBmgJaA9DCAhyUMKM7HFAlIaUUpRoFUu9aBZHQKoPevW6K+B1fZQoaAZoCWgPQwiYMQVrXAJyQJSGlFKUaBVLuWgWR0CqD/S1eBxxdX2UKGgGaAloD0MIeeV620wNc0CUhpRSlGgVS6VoFkdAqhA+zByjpXV9lChoBmgJaA9DCKDCEaTSMnFAlIaUUpRoFUvaaBZHQKoQhOIInjR1fZQoaAZoCWgPQwhfJLTlnCZxQJSGlFKUaBVNRwFoFkdAqhB/FirksHV9lChoBmgJaA9DCN3u5T75uHBAlIaUUpRoFUu+aBZHQKoQiMnZ00Z1fZQoaAZoCWgPQwjg929eHO9zQJSGlFKUaBVL5GgWR0CqELWmxdIHdX2UKGgGaAloD0MIXDl7ZzQ9ckCUhpRSlGgVTS4BaBZHQKoRJ8F6iTN1fZQoaAZoCWgPQwh4CyQofhtxQJSGlFKUaBVNPgFoFkdAqhFfezlcQnV9lChoBmgJaA9DCMRg/gpZw3FAlIaUUpRoFU04AWgWR0CqEcg2Ifr9dX2UKGgGaAloD0MIfEYiNELQcECUhpRSlGgVS7ZoFkdAqhHN+7UXpHV9lChoBmgJaA9DCEzChTxCC3JAlIaUUpRoFUvKaBZHQKoR4S0Sh8J1fZQoaAZoCWgPQwiO6nQgq5NwQJSGlFKUaBVLrmgWR0CqEfJ0wJw9dX2UKGgGaAloD0MIlKXW+w0HcUCUhpRSlGgVS71oFkdAqhH8Of/WD3V9lChoBmgJaA9DCIrNx7VhVXNAlIaUUpRoFUvnaBZHQKoSeIkZ75V1fZQoaAZoCWgPQwgtlbcj3DdzQJSGlFKUaBVN1wFoFkdAqhKFyYG+snV9lChoBmgJaA9DCHCaPjtgH3BAlIaUUpRoFUu8aBZHQKoSiwt8NQV1fZQoaAZoCWgPQwg1KQXd3nxyQJSGlFKUaBVLsWgWR0CqEwDU3GXHdX2UKGgGaAloD0MIcaq1MAv+cUCUhpRSlGgVS+9oFkdAqhMsK/mDDnV9lChoBmgJaA9DCKTjamTXSXJAlIaUUpRoFUu5aBZHQKoTh3g1m8N1fZQoaAZoCWgPQwiu8ZnsX3tyQJSGlFKUaBVNVQFoFkdAqhORkAggYHV9lChoBmgJaA9DCDhpGhRNfHNAlIaUUpRoFU0IAWgWR0CqE6M8YAKfdX2UKGgGaAloD0MIQFBu27dWckCUhpRSlGgVTSEBaBZHQKoUIvkili11fZQoaAZoCWgPQwhR3sfR3CxyQJSGlFKUaBVNbAFoFkdAqhSNIwudw3V9lChoBmgJaA9DCFPL1voiqHJAlIaUUpRoFUvaaBZHQKoUlQAMlTp1fZQoaAZoCWgPQwiVuflGNNdxQJSGlFKUaBVL2mgWR0CqFRjIJZ4fdX2UKGgGaAloD0MIhpLJqV2YckCUhpRSlGgVS+RoFkdAqhUUPvrnknV9lChoBmgJaA9DCPRwAtOpAHNAlIaUUpRoFUu4aBZHQKoVQEkjX4F1fZQoaAZoCWgPQwi0WfW5GlhxQJSGlFKUaBVLuWgWR0CqFT3VCojwdX2UKGgGaAloD0MI1NNH4M9zcECUhpRSlGgVS7xoFkdAqhYxC+lCTnV9lChoBmgJaA9DCHehuU6jp3NAlIaUUpRoFU0xAWgWR0CqFjYxk/bCdX2UKGgGaAloD0MI7s1vmOgCcECUhpRSlGgVS+ZoFkdAqhZuUOd5IHV9lChoBmgJaA9DCA7bFmV2HXNAlIaUUpRoFUvpaBZHQKoWraFEiMZ1fZQoaAZoCWgPQwjL2TujLbdyQJSGlFKUaBVL/2gWR0CqFsz7di2EdX2UKGgGaAloD0MIdFyN7AqqckCUhpRSlGgVTWABaBZHQKoW1Pa+N991fZQoaAZoCWgPQwhb0HtjyLdyQJSGlFKUaBVLmWgWR0CqFuviDM/ydX2UKGgGaAloD0MIcZNRZVitcECUhpRSlGgVS81oFkdAqhb+ukk8inV9lChoBmgJaA9DCNriGp/JE3JAlIaUUpRoFUvXaBZHQKoXRF6zE751fZQoaAZoCWgPQwgS+S6lrm9xQJSGlFKUaBVLumgWR0CqF0o91U2ldX2UKGgGaAloD0MILQWk/U+JcECUhpRSlGgVS8FoFkdAqhdkHWz4UXV9lChoBmgJaA9DCLudfeXB/nJAlIaUUpRoFU2SAmgWR0CqF3G8ujASdX2UKGgGaAloD0MI0jb+RKUJckCUhpRSlGgVS+FoFkdAqheRVyWAw3V9lChoBmgJaA9DCDYf14YKYHJAlIaUUpRoFUvIaBZHQKoXmCmMwUR1fZQoaAZoCWgPQwjqBgq8EzhxQJSGlFKUaBVNSwFoFkdAqhhUfaHsTnV9lChoBmgJaA9DCJj75CjARHNAlIaUUpRoFU0EAWgWR0CqGHzQmeDndX2UKGgGaAloD0MI0zHnGXuwc0CUhpRSlGgVS9BoFkdAqhi65NGmUHV9lChoBmgJaA9DCP9eCg8ar29AlIaUUpRoFUuvaBZHQKoY6GHHmzV1fZQoaAZoCWgPQwgh6j4AaX5yQJSGlFKUaBVL12gWR0CqGQCJGe+VdX2UKGgGaAloD0MIUFPL1rpocECUhpRSlGgVS+VoFkdAqhlNUp/gBXV9lChoBmgJaA9DCBL7BFCMFEFAlIaUUpRoFUtvaBZHQKoZhBsyi251ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 980,
|
79 |
"n_steps": 1024,
|
80 |
+
"gamma": 0.9999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:684e318929a5103e4cef804633dbe27417fad785c2437d6fea50d6f7f1af662e
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e873cfd7cfcaadcce4bc86d0d35fdce12e2ccecaba5d91c497c3ab18e532d2d
|
3 |
+
size 43073
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
-
GPU Enabled:
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
|
|
2 |
Python: 3.8.16
|
3 |
Stable-Baselines3: 1.6.2
|
4 |
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: False
|
6 |
Numpy: 1.21.6
|
7 |
Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 285.1019196116637, "std_reward": 13.631565452346784, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-10T09:54:26.667412"}
|